4851. Details
The company “Auto-2012” produces engines for world-famous cars. The engine consists of exactly n details, numbered from 1 to n, while the detail with the number i is manufactured for pi seconds. Specificity of the enterprise “Auto-2012” is that only one engine component can be manufactured at a time. To produce some details, you must have a pre-made set of other details.

The general director of “Auto-2012” set before the company an ambitious task – for the shortest time to make the detail number 1 to present it at the exhibition.

Write a program that, according to the given dependences of the order of production between the details, finds the shortest time for which you can make a detail with number 1.

Input. The first line contains n (1 ≤ n ≤ 105) integers p1, p2, ..., pn giving the manufacturing time of each detail in seconds.

Each of the following n lines describes the characteristics of the details production. Here i-th line contains the list of details that are required for the production of the detail with the number i. There are no duplicate detail numbers in the list. The list can also be empty – then it will have an empty string! The sum of the lengths of all lists does not exceed 200000.

It is known that there are no cyclical dependencies in the production of details.

Output. Print the minimum time (in seconds) required for the speedy production of the detail with number 1.
	Sample input 1
	Sample output 1

	100 200 300

2

2 1
	300

	
	

	Sample input 2
	Sample output 2

	3 5 1 2

3
1 4
4
	6

SOLUTION
graphs – topological sort
Algorithm analysis
Let’s construct a graph of details dependencies and reverse it. To produce the detail number 1, you must produce all the details reachable from it (the first detail depends from all of them). Detail i is produced in pi seconds, assign the weight pi to the i-th vertex.

Start a depth first search from the vertex 1 and compute the sum of weights of all vertices reachable from it (including 1). This will be the required minimum time.
Example
Consider the first example. Let’s construct a graph of details’ dependencies (on the left) and its inverse graph (on the right).

[image: image1.emf]1

23

1

23

100

200300

100

200300

The first detail depends on the second. The second detail does not depend on any other. In the reverse graph from the first vertex there is a path only to the second. Therefore, the total time through which the first detail can be produced is 100 + 200 = 300 (first we produce the second detail, then the first).
Consider the second example: a graph and its inverse.

[image: image2.emf]1

23

135

4

2

1

23

135

4

2

In the reverse graph, the path from the first vertex exists to 3 and 4. The time after which the first detail can be produced is 3 + 1 + 2 = 6.
Algorithm realization
Store the time of manufacturing details in the array p.
#define MAX 100010

long long p[MAX];

Declare a graph g and an array used of visited vertices during the depth first search.
int used[MAX];

vector<vector<int> > g;

Function dfs implements depth first search. For the detail (vertex) v we compute the shortest time after which it can be produced. It equals to the immediate production time of the detail p[v] plus the production time of the details which v depends from. Details are produced by one device – one by one, not in parallel.
long long dfs(int v)

{

 used[v] = 1;

 long long res = p[v];

 for (int i = 0; i < g[v].size(); i++)

 {

 int to = g[v][i];

 if (!used[to]) res += dfs(to);

 }

 return res;

}

The main part of the program. The number of details is not known, read them till the end of line, count their number in the variable n. Store the production time of the details in the array p.
n = 1;

while(scanf("%lld%c",&p[n],&ch), ch != '\n') n++;

Read the information about dependencies between the order of manufacturing the details.
g.resize(n+1);

for(i = 1; i <= n; i++)

{

 gets(s);

 stringstream in(s);

To manufacture the detail number i, all parts which numbers are in the line s must be produced. Given a line s, construct a stream in. For each number a from the stream create an edge i (a.
 while (in >> a) g[i].push_back(a);
}

Compute and print the shortest time for production the detail number 1.
memset(used,0,sizeof(used));

res = dfs(1);

printf("%lld\n",res);

_1578491127.vsd
1

2

3

1

2

3

100

200

300

100

200

300

_1685200405.vsd
1

2

3

3

5

4

2

1

1

2

3

1

3

5

4

2

