419. The 3n + 1 problem
Consider the following algorithm:

 1. input n
 2. print n
 3. if n = 1 then STOP

 4. if n is odd then n = 3 * n + 1

 5. else n = n / 2

 6. GOTO 2

Given the input 22, the following sequence of numbers will be printed

22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this).

Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j inclusive.

Input. The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0. You can assume that no operation overflows a 32-bit integer.
Output. For each pair of integers i and j you should output i and j in the same order in which they appeared in the input. Then print the maximum cycle length for integers between and including i and j. For each test case print three numbers on one line, separating them by one space.
Sample input
1 10

100 200

201 210

900 1000
Sample output
1 10 20

100 200 125

201 210 89

900 1000 174
SOLUTION
elementary problem - cycles
Algorithm analysis

Write a function cycle_length that calculates the cycle length of the number n. Then for each value from i to j inclusive find the length of the cycle using the simple search. Print the length of maximum cycle.
Algorithm realization
The function cycle_length finds the cycle length of the number n. It generates a sequence until we get 1 and calculates its length in the variable cnt.
int cycle_length(int n)

{

 int cnt;

 for(cnt = 1; n != 1; cnt++)

 n = (n % 2) ? 3 * n + 1: n / 2;

 return cnt;

}

The function check finds the length of maximum cycle for numbers from i to j inclusive using brute force.

int check(int i,int j)

{

 int mx = 0;

 for(; i <= j; i++)

 mx = max (mx, cycle_length(i));

 return mx;

}

The main part of the program. Read the input data. The input value i can be greater than j, in this case we must just swap i and j. Find and print the maximum cycle length.
while (scanf("%d %d",&i,&j) == 2)

{

 itemp = i; jtemp = j;

 if (i > j) tmp = i, i = j, j = tmp;

 printf("%d %d %d\n",itemp, jtemp, check(i,j));

}

