5327. Bracket sequence
The bracket sequence is a correct arithmetic expression from which all numbers and operation signs have been removed. For example,
1 + (((2 + 3) + 5) + (3 + 4)) → ((()) ())

Input. A sequence of opening and closing brackets is given. The length of the sequence is no more than 4 * 106.
Output. Print “YES” if the bracket sequence is correct and “NO” otherwise.
	Sample input 1
	Sample output 1

	((())())
	YES

	
	

	Sample input 2
	Sample output 2

	(()
	NO

SOLUTION
stack
Algorithm analysis
Let’s declare a stack in which we will store only opening brackets. Upon receiving each character, we perform the following operation with the stack:

· If the character ‘(‘ is encountered, we push it onto the stack;
· if the character ‘)’ is encountered, we pop an element from the stack. If the stack is empty at this point, the sequence is not a bracket sequence (at some point, the number of closing brackets exceeds the number of opening brackets);

At the end of processing the string, the stack should be empty.
We can simulate the stack using a single variable. Let the variable cnt store the number of open brackets in the stack. Then, when pushing ‘(‘ onto the stack, we perform the operation cnt++, and when removing an element from the stack, we perform the operation cnt--.
Example
Let’s simulate the stack operations for the string “((())())” from the first example.

[image: image1.emf]((())

((

(

((

(

(

(

(

open012321

())

((

(

210

Algorithm realization
Read the input string.
cin >> s;

The variable cnt stores the number of current unclosed brackets (i.e., the number of opening brackets for which corresponding closing brackets have not yet been encountered).
The variable flag will be set to 1 if, at any iteration, the number of closing brackets exceeds the number of opening brackets. Initially, we set flag = 0.
cnt = flag = 0;
Process the input string character by character, simulating stack operations.
for (i = 0; i < s.size(); i++)

{
Process the current character s[i].

 if (s[i] == '(') cnt++; else cnt--;

If the number of closing brackets exceeds the number of opening brackets at any iteration, then the input sequence is not a bracket sequence.
 if (cnt < 0) flag = 1;

}

Depending on the values of the variables flag and cnt, print the answer. The stack will be empty at the end of processing the string if cnt = 0.
if (flag == 0 && cnt == 0)

 cout << "YES\n"; else cout << "NO\n";

Java realization – string
import java.util.*;
public class Main
{
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 String s = con.nextLine();
 boolean flag = false;
 int open = 0;
 for(int i = 0; i < s.length(); i++)
 {
 if (s.charAt(i) == '(')
 open++;
 else
 open--;
 if (open < 0)
 flag = true;
 }
 if (flag || (open > 0))
 System.out.println("NO");
 else
 System.out.println("YES");
 con.close();
 }
}
Java realization – char array
import java.util.*;
public class Main
{
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 char s[] = con.nextLine().toCharArray();
 boolean flag = false;
 int open = 0;
 for(int i = 0; i < s.length; i++)
 {
 if (s[i] == '(')
 open++;
 else
 open--;
 if (open < 0)
 flag = true;
 }
 if (flag || (open > 0))
 System.out.println("NO");
 else
 System.out.println("YES");
 con.close();
 }
}
Python realization
Read the input string.
s = input()
The variable cnt stores the number of current unclosed brackets (i.e., the number of opening brackets for which corresponding closing brackets have not yet been encountered).
The variable flag will be set to 1 if, at any iteration, the number of closing brackets exceeds the number of opening brackets. Initially, we set flag = 0.
cnt = flag = 0
Process the input string character by character, simulating stack operations.
for ch in s:
Process the current character ch.

 if ch == '(': cnt += 1
 else: cnt -= 1
If the number of closing brackets exceeds the number of opening brackets at any iteration, then the input sequence is not a bracket sequence.
 if cnt < 0: flag = 1
Depending on the values of the variables flag and cnt, print the answer. The stack will be empty at the end of processing the string if cnt = 0.
if flag == 0 and cnt == 0:
 print("YES")
else:
 print("NO")

_1661279936.vsd
(

(

(

)

)

(

(

(

(

(

(

(

(

(

open

0

1

2

(

)

)

3

2

1

(

(

(

2

1

0

