6021. Mega Inversions

The n2 upper bound for any sorting algorithm is easy to obtain: just take two elements that are misplaced with respect to each other and swap them. Conrad conceived an algorithm that proceeds by taking not two, but three misplaced elements. That is, take three elements ai > aj > ak with i < j < k and place them in order ak, aj, ai. Now if for the original algorithm the steps are bounded by the maximum number of inversions n (n – 1 ) / 2, Conrad is at his wits' end as to the upper bound for such triples in a given sequence. He asks you to write a program that counts the number of such triples.

Input. The first line is the length of the sequence n (1 ≤ n ≤ 105). The next line contains the integer sequence a1, a2, ..., an (1 ≤ ai ≤ n).

Output. Print the number of inverted triples.

	Sample input
	Sample output

	4

3 3 2 1
	2


SOLUTION
data structures – Fenwick tree
Algorithm analysis
In cells pref[i], for each value of ai, count the number of elements to the left and strictly greater than ai. Then, for each ai, count in suff[i] the number of elements to the right and strictly less than ai.

The required number of triples is
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The product pref[i] * suff[i] corresponds to the number of required triples with ai in the middle.
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· pref[j] = 2, since to the left of aj = 6 there are two number greater than 6: 8 and 9.

· suff[j] = 2, since to the right of aj = 6 there are two number less than 6: 2 and 3.
There are pref[j] * suff[j] = 2 * 2 = 4 inverted triplets, in which aj = 6 is in the middle: (8, 6, 2), (8, 6, 3), (9, 6, 2), (9, 6, 3).

Let’s take a closer look at how to build the pref[i] array. Let’s create an array b of size n, initially set its elements to zero. Simulate its processing with the Fenwick tree. At each iteration make an operation b[a[i]]++. To find out the amount of numbers greater than a[i] at the i-th iteration, compute the sum b[a[i] + 1] + b[a[i] + 2] + … + b[n]. It equals to the sum of all numbers in the array b minus the sum of b[0] + b[1] + … + b[a[i]]. The sum of all numbers in array b at the i-th iteration equals to the number of iterations i, since at each iteration we increased one of the elements b by one. In this case
pref[i] = i – (b[0] + b[1] + … + b[a[i]])

While computing the suffixes, we also simulate the operation of array b by adding b[a[i]]++ at each iteration. In this case, we consider the numbers of the array a from right to left: an, an-1, …, a1. Then the number of elements to the right and strictly less than ai is equal to b[0] + b[1] + … + b[a[i] – 1], which is suf[i].
Example
Consider the next test case:
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The number of required triples is 
0 * 3 + 1 * 1 + 0 * 3 + 1 * 2 + 4 * 0 + 3 * 0 = 3
Consider for example, how to count the number of inversions ai > aj > ak, where aj = 5. Their number is pref[4] * suff[4] = 1 * 2 = 2.
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Consider the process of computing the array pref.
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Algorithm realization
Declare the global arrays.
#define MAX 100010

int Fenwick[MAX], a[MAX], pref[MAX];

Compute the sum b[0] + b[1] + … + b[i].

int Summma0_i(int i)

{

  int result = 0;

  for (; i >= 0; i = (i & (i + 1)) - 1)

    result += Fenwick[i];

  return result;

}

Increase b[i] by one.

void IncElement(int i)

{

  for (; i < MAX; i = (i | (i+1)))

    Fenwick[i]++;

}

The main part of the program. Read the input data.
scanf("%d", &n);

for(i = 1; i <= n; ++i)

  scanf("%d", &a[i]);

For each value of ai, count the number of elements to the left and strictly greater than ai. Store this value in pref[i].
for(i = 1; i <= n; i++) 

{

  IncElement(a[i]);

  pref[i] = i - Summma0_i(a[i]);

}

Move from right to left along the array a. Compute the result according to the formula given in the problem analysis.
memset(Fenwick,0,sizeof(Fenwick));

for(i = n; i >= 1; i--)

{

  IncElement(a[i]);

  res += 1LL * pref[i] * Summma0_i(a[i] - 1);

}

Print the answer.

printf("%lld\n",res);

Java realization
import java.util.*;
public class Main
{
  static int Fenwick[], a[], pref[];
  final static int MAX = 100001;
  static int Summma0_i(int i)
  {
    int result = 0;
    for (; i >= 0; i = (i & (i + 1)) - 1)
      result += Fenwick[i];
    return result;
  }
  static void IncElement(int i)
  {
    for (; i < MAX; i = (i | (i+1)))
      Fenwick[i]++;
  }
  public static void main(String[] args)
  {
    Scanner con = new Scanner(System.in);
    int n = con.nextInt();
    a = new int[n+1];
    pref = new int[n+1];
    Fenwick = new int[MAX];
    for(int i = 1; i <= n; i++)
      a[i] = con.nextInt();
    for(int i = 1; i <= n; i++) 
    {
      IncElement(a[i]);
      pref[i] = i - Summma0_i(a[i]);
    }
    Fenwick = new int[MAX];
    long res = 0;
    for(int i = n; i >= 1; i--)
    {
      IncElement(a[i]);
      res += 1L * pref[i] * Summma0_i(a[i] - 1);
    }
    System.out.println(res); 
    con.close();
  }
}
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