6940. Maximum word frequency
Term frequency-Inverse document frequency (tf-idf) is a numerical statistic which reflects the importance of words in a document collection. It is often used in information retrieval system. The number of times a word appears in the document (word frequency) is one of the major factors to acquire tf-idf.

You are asked to write a program to find the most frequent word in a document.

Input. The first line contains an integer n (1 ≤ n ≤ 1000) which determines the number of words. The following n lines include the list of words, one word per line. A word contains only lower-case letters and it can contain up to 20 characters.
Output. Print the word that has the highest frequency and its frequency, separated by a single space. If you get two or more results, choose one that comes later in the lexicographical order.

	Sample input
	Sample output

	10

mountain

lake

lake

zebra

tree

lake

zebra

zebra

animal

lakes
	zebra 3

SOLUTION
data structures - map
Algorithm analysis
Declare a data structure map<string, int> m, that will count how many times each word occurs. Then find the word that occurs the most times. If there are several such words, then print lexicographically the largest.

Algorithm realization
In the map m count how many times each word appears.

map<string,int> m;

Read and count the words.

cin >> n;

for (i = 0; i < n; i++)

{

 cin >> s;

 m[s]++;

}

Find the word res that occurs the most times mx.

mx = 0;

for (auto x : m)
If several words occur the maximum number of times, then store in res the lexicographically largest word.
 if (x.second >= mx)

 {

 mx = x.second;

 res = x.first;

 }

Print the word with the maximum frequency and the frequency itself.

cout << res << " " << mx << endl;

Java realization
import java.util.*;
public class Main
{
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 TreeMap<String, Integer> tree = new TreeMap<String, Integer>();
 int test = con.nextInt();
 while(test-- > 0)
 {
 String s = con.next();
 tree.put(s, tree.getOrDefault(s, 0) + 1);
 }
 int max = -1;
 String res = null;
 for(String s : tree.keySet())
 {
 int n = tree.get(s);
 if (n >= max)
 {
 res = s;
 max = n;
 }
 }
 System.out.println(res + " " + max);
 con.close();
 }
}
