7261. Difficult path
Alex drank a lot this night and now when he reached his street, he has completely lost the sense of direction. Since he can not remember where his house is, he chooses direction randomly. Moreover, at every crossroads there is a 50% chance that he will keep going forward or turn around and go back. He so lost his touch with reality that he can even walk past his own house and not notice it!

Having passed n blocks, Alex falls asleep right on the street. When he wakes up, he wonders what were the chances that he slept near his house? From the crossroads, where he started his way to the crossroads near his house there are m blocks. Help him.
Input. One line contains two integers n and m (1 ≤ n, m ≤ 1000).
Output. Print one number - Alex’s chances to fall asleep at the crossroads right next to his house. Print the result with error not grater than 10-7.
	Sample input 1
	Sample output 1

	1 1
	0.5

	
	

	Sample input 2
	Sample output 2

	1000 100
	0.000169397

SOLUTION
probability
Algorithm analysis
Let d be a two dimensional array where d[time][x] is a probability of being at the point with abscissa x at time time. Let initially (at time t = 0) Alex is located at the point with the abscissa x = n. Then d[0][n] = 1.

[image: image1.emf]n

1.0

n

0.0

n -1

0.5

n + 1

0.5

time = 0

time = 1

n

0.5

n -1

0.0

n + 1

0.0time = 2

n -2

0.25

n + 2

0.25

n

0.0

n -1

0.375

n + 1

0.375time = 3

n -2

0.0

n + 2

0.0

n -3

0.125

n + 3

0.125

Let’s evaluate d[i][j] – the probability that Alex at time i will be at position j. For this Alex must be located at time i – 1 either at position j – 1, or at position j + 1. Then at time i he can come from them to position j with probability 50%. So
d[i][j] = (d[i – 1][j – 1] + d[i – 1][j + 1]) / 2

Let’s consider the mathematical solution of the problem. We encode the Alex’ path with sequence of 0 and 1. Let 1 means move to the right and 0 means move to the left. Let among n Alex’ steps k steps he did right. Then n - k steps he did left.

[image: image2.emf]k

n -k

m

We are interested to find the probability that Alex moved himself in one of the sides (for example to the right) m blocks. Then we must have: m + n – k = k, where k = (m + n) / 2. The number of sequences of length n with k ones equals to
[image: image3.wmf]k

n

C

. Since Alex made n movements, he has 2n different ways to choose the path. So the probability that Alex pass to the right m blocks equals to
[image: image4.wmf]k

n

C

 / 2n, where k = (m + n) / 2. Note that desired probability equals to 0, if m + n is even. In this case Alex is not able to reach home (m + n = 2k is even).
Sample
Let Alex makes n = 3 steps.

If m = 1, then k = (3 + 1) / 2 = 2 and probability equals to
[image: image5.wmf]2

3

C

 / 23 = 3 / 8 = 0.375.

If m = 3, then k = (3 + 3) / 2 = 3 and probability equals to
[image: image6.wmf]3

3

C

 / 23 = 1 / 8 = 0.125.

Let Alex makes n = 4 steps.

If m = 0, then k = (4 + 0) / 2 = 2 and probability equals to
[image: image7.wmf]2

4

C

 / 24 = 6 / 16 = 0.375.

If m = 2, then k = (4 + 2) / 2 = 3 and probability equals to
[image: image8.wmf]3

4

C

 / 24 = 4 / 16 = 0.25.

If m = 4, then k = (4 + 4) / 2 = 4 and probability equals to
[image: image9.wmf]4

4

C

 / 24 = 1 / 16 = 0.0625.

Algorithm realization

We declare the two dimensional array for calculating the probabilities.
#define MAX 2010

double d[MAX][MAX];

Read the input data. Initialize the array d.
scanf("%d %d",&n,&m);

memset(d,0,sizeof(d));

d[0][n] = 1;

Recalculate the probabilities according to given recurrence relation.

for(i = 1; i <= n; i++)

 for(j = n - i; j <= n + i; j++)

 d[i][j] = (d[i-1][j-1] + d[i-1][j+1]) / 2;

Print the answer – the probability that Alex will move in one of the sides (for example to the right) m blocks and will find his home.
printf("%.9lf\n",d[n][n+m]);

Java realization
import java.util.*;
public class Main
{
 public static void main(String []args)
 {
 Scanner con = new Scanner(System.in);
 int n = con.nextInt();
 int m = con.nextInt();
 double d[][] = new double[n+1][2*n+1];
 d[0][n] = 1;
 for(int i = 1; i <= n; i++)
 {
 for(int j = n - i; j <= n + i; j++)
 {
 double a = (j - 1 < 0) ? 0 : d[i-1][j-1];
 double b = (j + 1 > 2*n) ? 0 : d[i-1][j+1];
 d[i][j] = (a + b) / 2;
 // d[i][j] = (d[i-1][j-1] + d[i-1][j+1]) / 2;
 }
 }
 double res = (n + m > 2*n) ? 0 : d[n][n+m];
 System.out.println(res);
 con.close();
 }
}
_1521883052.unknown

_1521883714.unknown

_1528898987.vsd
n

1.0

n

0.0

n - 1

0.5

n + 1

0.5

time = 0

time = 1

n

0.5

n - 1

0.0

n + 1

0.0

time = 2

n - 2

0.25

n + 2

0.25

n

0.0

n - 1

0.375

n + 1

0.375

time = 3

n - 2

0.0

n + 2

0.0

n - 3

0.125

n + 3

0.125

_1521883867.unknown

_1521883666.unknown

_1521882525.unknown

_1521883007.unknown

_1521882085.vsd
k

n - k

m

