7335. Saucepans and lids

A huge disaster occurred this morning at the café where you used to have snacks during your university studies. The cleaner, Larisa Ivanovna, accidentally knocked over one of the cabinets while sweeping the floor, causing all the kitchen utensils stored inside to scatter across the floor. Fortunately, it only contained saucepans with lids. However, some of them got bent or broken, so they had to be thrown away.
Now the schoolmaster wants to calculate the losses and determine how many new saucepans and lids should be purchased. But first, it is necessary to find out how many remaining saucepans can be covered by the remaining lids.
The saucepans and lids are round. A lid can cover a saucepans only if its radius is not less than the radius of the pot.

Input. The first line contains integers n, m (1 ≤ n, m ≤ 1000) – the number of remaining saucepans and lids. The second line contains n integers ai (1 ≤ ai ≤ 1000) – the radii of the remaining saucepans. The third line contains m integers bi (1 ≤ bi ≤ 1000) – the radii of the remaining lids.

Output. Print one number – the largest number of saucepans that can be covered by the available lids.

	Sample input
	Sample output

	5 5
4 8 1 2 5
7 2 4 6 5
	4

SOLUTION
greedy

Algorithm analysis
Sort the radii of the lids and the radii of the saucepans in ascending order. For the smallest saucepan, find the smallest lid that can cover it. Then, for the second smallest pan, find the smallest lid that fits it, and so on. The answer will be the number of saucepans that can be covered with lids.

Example
Let’s find the maximum number of pans for which lids can be matched in the given example.

Algorithm implementation
Declare arrays to store the radii of saucepans and lids.

#define MAX 1010
int pan[MAX], lid[MAX];

Read the input data.

scanf("%d %d",&n,&m);
for(i = 0; i < n; i++)
 scanf("%d",&pan[i]);
for(i = 0; i < m; i++)
 scanf("%d",&lid[i]);

Sort the radii of pans and lids.

sort(pan,pan+n);
sort(lid,lid+m);

Using the greedy method, search for the smallest lid each time that can cover the smallest pan.

for (i = j = 0; (i < n) && (j < m); j++)
 if (pan[i] <= lid[j]) i++;

Print the number of covered pans.

printf("%d\n",i);

Java implementation

import java.util.*;

public class Main
{
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 int n = con.nextInt();
 int m = con.nextInt();
 Integer pan[] = new Integer[n];
 for(int i = 0; i < n; i++)
 pan[i] = con.nextInt();

 Integer lid[] = new Integer[n];
 for(int i = 0; i < m; i++)
 lid[i] = con.nextInt();

 Arrays.sort(pan);
 Arrays.sort(lid);

 int i = 0;
 for(int j = 0; (i < n) && (j < m); j++)
 if (pan[i] <= lid[j]) i++;

 System.out.println(i);
 con.close();
 }
}

Python implementation
Read the input data.

n, m = map(int,input().split())
pan = list(map(int,input().split()))
lid = list(map(int,input().split()))

Sort the radii of pans and lids.

pan.sort()
lid.sort()

Using the greedy method, search for the smallest lid each time that can cover the smallest pan.

i = j = 0
while i < n and j < m:
 if pan[i] <= lid[j]: i += 1
 j += 1

Print the number of covered pans.

print(i)

image1.emf
pans

lids

1 2 4 5 8

2 4 5 6 7

oleObject1.bin
pans

lids

1

2

4

5

8

2

4

5

6

7

