7531. Landline Telephone Network
The mayor of RMRCity wants to create a secure landline telephone network for emergency use in case of serious disasters when the city is cut off from the outside world. Some pairs of buildings in the city can be directly connected with a wire telephone line and the municipality engineers have prepared an estimate of the cost of connecting any such pair.

The mayor needs your help to find the cheapest network that connects all buildings in the city and satisfies a particular security measure that will be explained shortly. A call from a building A to another building B may be routed through any simple path in the network (i.e., a path that does not have any repeated building). There are also some insecure buildings that one or more persons with serious criminal records live in. The mayor wants only communications intended for these insecure buildings to reach them. In other words, no communication from any building A to any building B should pass through any insecure building C in the network (where C is different from A and B).
Input. The first line contains three integers n, m, p where n (1 ≤ n ≤ 1000) is the number of buildings, m (0 ≤ m ≤ 105) is the number of possible direct connections between a pair of buildings, and p (0 ≤ p ≤ n) is the number of insecure buildings. The buildings are numbered from 1 to n. The second line contains p distinct integers between 1 and n (inclusive), which are the numbers of insecure buildings. Each of the next m lines contains three integers xi, yi and li describing one potential direct line, where xi and yi (1 ≤ xi, yi ≤ n) are the distinct buildings the line connects, and li (1 ≤ li ≤ 10000) is the estimate of the cost of connecting these buildings. There is at most one direct link between any two buildings in these m lines.
Output. Display the cost of the cheapest network satisfying the security measure if it is possible. Otherwise, print “impossible”.
	Sample input 1
	Sample output 1

	4 6 1

1

1 2 1

1 3 1

1 4 1

2 3 2

2 4 4

3 4 3
	6

	
	

	Sample input 2
	Sample output 2

	4 3 2

1 2

1 2 1

2 3 7

3 4 5
	impossible

SOLUTION
graphs – minimal spanning tree – Kruskal algorithm
Algorithm analysis
Find the value of the minimum spanning tree for all buildings except unsafe ones. Then connect each unsafe building to the nearest safe one. The required network cannot be constructed if the graph is disconnected.

Separately, analyze the case when there are no safe buildings in the city. If there is only one unsafe building, then the answer is 0, if there are two unsafe buildings, then the answer equals to the distance between them. If there are more than 2 unsafe buildings, then the desired network does not exist.
Example
Let’s look at the first sample. The unsafe house has number 1. Build the MST for the vertices 2, 3, 4 – its value is 5. Connect the house number 1 to MST. The cost of the cheapest network is 6.

[image: image1.emf]1 2

4 3

2

1

3

4 1

1

Let’s consider the second sample. Unsafe house numbers are 1 and 2. Unsafe house number 1 must be directly connected to a safe house, which is impossible for the given network. Therefore, the answer is impossible.

[image: image2.emf]1 2 3 4

1 7 5

Algorithm realization
Declare the constant infinity INF. Store the edges of the graph in the array v.
#define INF 1000000

struct Edge

{

 int u, v,dist;

 Edge(int u, int v, int dist) : u(u), v(v), dist(dist) {};

};

vector<Edge> e;

If u is an unsafe house, then danger[u] will store the distance from it to the nearest safe house.
vector<int> danger;
The function lt is a comparator for graph edges.
int lt(Edge a, Edge b)

{

 return (a.dist < b.dist);

}

The main part of the program. Read the input data. Initialize the array mas for the system of disjoint sets.
scanf("%d %d %d",&n,&m,&p);

mas.resize(n + 1);

for(i = 1; i <= n; i++) mas[i] = i;

Read the unsafe houses u.
danger.resize(n + 1);

for(i = 0; i < p; i++)

{

 scanf("%d",&u);

 danger[u] = INF;

}

We are looking for the shortest distance from unsafe houses to the nearest safe ones. Make the recalculations for such edges (u, v), where one vertex belongs to a safe house, and the other to an unsafe one.
for(i = 0; i < m; i++)

{

 scanf("%d %d %d",&u,&v,&dist);

 if ((danger[u] > 0) && (danger[v] == 0))

 danger[u] = min(danger[u],dist);

 if ((danger[v] > 0) && (danger[u] == 0))

 danger[v] = min(danger[v],dist);

If both vertices are safe houses, then add the corresponding edge to the graph.
 if ((danger[u] == 0) && (danger[v] == 0))

 e.push_back(Edge(u,v,dist));

}

If graph does not contain edges, then the answer is 0.
if (m == 0)

{

 puts("0");

 return 0;

}

If graph contains one edge that connects two houses (safe or unsafe), then print the distance between them.
if (m == 1)

{

 printf("%d\n",dist);

 return 0;

}

Sort the edges of the graph. The array e stores only the edges that connect the safe houses.
sort(e.begin(),e.end(),lt);

Run the Kruskal algorithm. Find the value res of MST. In the variable cnt, count the number of edges in the constructed network.
cnt = res = 0;

for(i = 0; i < e.size(); i++)

 if (Union(e[i].u,e[i].v))

 {

 res += e[i].dist;

 cnt++;

 }

Connect the unsafe houses to MST. Add to res the distance from them to the nearest safe houses.
for (i = 1; i <= n; i++)

 if (danger[i] > 0)

 {

 res += danger[i];

 cnt++;

 }

If the resulting graph is not connected or the size of the resulting network is greater than infinity INF (for example, there is an unsafe house from which there is no way to MST), then the answer is impossible. Otherwise, print the length res of the MST.
if ((cnt != n - 1) || (res > INF))

 puts("impossible");

else

 printf("%d\n",res);

Java realization
import java.util.*;
class Edge
{
 int u, v, dist;
 Edge (int u, int v, int dist)
 {
 this.u = u;
 this.v = v;
 this.dist = dist;
 }
};
public class Main
{
 static int mas[];
 static int size[];
 static int Repr(int n)
 {
 while (n != mas[n]) n = mas[n];
 return n;
 }
 static boolean Union(int x,int y)
 {
 x = Repr(x);
 y = Repr(y);
 if (x == y) return false;
 mas[y] = x;
 return true;
 }
 public static class MyFun implements Comparator<Edge>
 {
 public int compare(Edge a, Edge b)
 {
 return a.dist - b.dist;
 }
 }
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 int n = con.nextInt();
 int m = con.nextInt();
 int p = con.nextInt();
 mas = new int[n+1];
 for(int i = 1; i <= n; i++)
 mas[i] = i;
 int danger[] = new int[n+1];
 for (int i = 0; i < p; i++)
 {
 int u = con.nextInt();
 danger[u] = Integer.MAX_VALUE;
 }
 Vector<Edge> e = new Vector<Edge>();
 int dist = 0;
 for(int i = 0; i < m; i++)
 {
 int u = con.nextInt();
 int v = con.nextInt();
 dist = con.nextInt();
 if ((danger[u] > 0) && (danger[v] == 0))
 danger[u] = Math.min(danger[u], dist);
 if ((danger[v] > 0) && (danger[u] == 0))
 danger[v] = Math.min(danger[v], dist);
 if ((danger[u] == 0) && (danger[v] == 0))
 e.add(new Edge(u, v, dist));
 }
 if (m == 0)
 {
 System.out.println("0");
 System.exit(0);
 }
 if (m == 1)
 {
 System.out.println(dist);
 System.exit(0);
 }
 Collections.sort(e, new MyFun());
 int cnt = 0;
 long res = 0;
 for (int i = 0; i < e.size(); i++)
 if (Union(e.get(i).u, e.get(i).v))
 {
 res += e.get(i).dist;
 cnt++;
 }
 for (int i = 1; i <= n; i++)
 if (danger[i] > 0)
 {
 res += danger[i];
 cnt++;
 }
 if ((cnt != n - 1) || (res > Integer.MAX_VALUE))
 System.out.println("impossible");
 else
 System.out.println(res);
 con.close();
 }
}
_1665589576.vsd
1

2

4

3

�

2

1

3

4

1

1

_1665589744.vsd
1

2

3

4

1

7

5

