7623. Lucky chances
Lucky Chances is a lottery game. Each lottery ticket has a play field and a scratch area. The play field is a rectangular r × c field filled with numbers. The scratch area hides row and column numbers that specify the bet cell.

There are four possible winning directions: up, down, left and right. You win a direction if all numbers in this direction from the bet cell are strictly less than a number in the bet cell. And if the bet cell is on the edge of the grid, you win the corresponding direction automatically!

[image: image1.png]
Larry wants to choose the ticket that has maximum total number of winning directions for all possible bet cells. Write a program that determines this number for the given grid.

Input. The first line contains two integers r and c (1 ≤ r, c ≤ 100) – the number of rows and columns in the grid.

The following r lines contain c integers each – the numbers printed on the grid. Each number is positive and does not exceed 1000.

Output. Output a single integer w – the total number of winning directions for the given grid.

	Sample input
	Sample output

	3 4

5 3 9 10

1 8 8 2

4 3 4 3
	25

SOLUTION
mathematics
Algorithm analysis
Let function check() computes the number of cells for which the left direction is winning. For each i-th line, find such a number of elements m[i][j] that all numbers in the line before it are strictly less than m[i][j].

Next, rotate the rectangular table clockwise by 90° and find the number of cells for which the left direction is winning. Rotate and count the cells two more times.
Example

[image: image2.emf]53910

1882

4343

3

2

1

6

[image: image3.emf]415

383

489

3210

2

3

2

2

9

[image: image4.emf]3434

2881

10935

5

2

2

1

[image: image5.emf]1023

984

383

514

5

1

1

2

1

In total we have:

[image: image6.emf]53910

1882

4343

3

2

1

1

2

2

1211

2232

9

5

56

Algorithm realization
Declare two arrays to store the table.
#define MAX 101

int m[MAX][MAX], m1[MAX][MAX];

Function check computes the number of cells for which the left direction is winning.
int check(void)

{

 int i, j, s, res = 0;

 for(i = 0; i < r; i++)

 {

 for(s = j = 0; j < c; j++)

 if (m[i][j] > s)

 {

 s = m[i][j];

 res++;

 }

 }

 return res;

}

Rotate the rectangle clockwise. First, rotate and move the data from m to m1. Next, copy m1 to m.

[image: image7.emf]53910

1882

4343

i

j

r = 3

c = 4

0

0

415

383

489

3210

c = 4

r = 3

r -i -1

j

(i, j)(j, r -i -1)

void rotate(void)

{

 int i, j, s;

 memset(m1,0,sizeof(m1));

 for(i = 0; i < r; i++)

 for(j = 0; j < c; j++)

 m1[j][r-i-1] = m[i][j];

 memcpy(m,m1,sizeof(m));

 s = r; r = c; c = s;

}

The main part of the program. Read the input data.

scanf("%d %d",&r,&c);

for(i = 0; i < r; i++)

for(j = 0; j < c; j++)

 scanf("%d",&m[i][j]);

Add to res the number of cells for which the left direction is winning. Then rotate the table. Repeat 4 times (left, bottom, right, top directions).
res = 0;

for(i = 0; i < 4; i++)

{

 res += check();

 rotate();

}

Print the answer.

printf("%d\n",res);

_1521628392.vsd
4

1

5

3

8

3

4

8

9

3

2

10

2

3

2

2

9

_1521640527.vsd
10

2

3

9

8

4

3

8

3

5

1

4

5

1

1

2

1

_1521640952.vsd
5

3

9

10

1

8

8

2

4

3

4

3

2

1

1

2

2

3

2

9

5

5

6

3

2

1

1

1

2

2

_1521642079.vsd
5

3

9

10

1

8

8

2

4

3

4

3

i

j

r = 3

 c = 4

0

0

4

1

5

3

8

3

4

8

9

3

2

10

c = 4

 r = 3

 r - i - 1

j

(i, j)

(j, r - i - 1)

_1521640374.vsd
3

4

3

4

2

8

8

1

10

9

3

5

5

2

2

1

_1521626622.vsd
5

3

9

10

1

8

8

2

4

3

4

3

3

2

1

6

