7748. Поймай эту корову
Farmer John has received information about the location of a runaway cow, and he immediately sets off to catch her. He starts at point n on the number line, while the cow is located at point k on the same line. Farmer John has two modes of transportation:

· Walking: FJ can move from any point x to x − 1 or x + 1 in one minute;

· Teleportation: FJ can move from any point x to 2 * x in one minute.

Since the cow is unaware of being pursued, she does not move. Determine the minimum amount of time it will take Farmer John to catch her.

Input. A single line contains two integers n (0 ≤ n ≤ 105) and k (0 ≤ k ≤ 105) – the starting positions of Farmer John and the cow, respectively.

Output. Print the minimum number of minutes required for Farmer John to reach the cow.

	Sample input
	Sample output

	5 17
	4

SOLUTION
breadth first search
Algorithm analysis
We can consider the positions on the number line as vertices of a graph, and the possible movements as edges of this graph. For example, a step to the right represents an edge between vertices x and x + 1, while teleportation represents an edge between x and 2 * x.

The minimum number of minutes it takes for Farmer John to catch the escaped cow corresponds to the length of the shortest path between vertices n and k. To find this path, we use a breadth-first search starting from vertex n. The answer is the shortest distance to vertex k.

Example
Let’s look at the fastest route Farmer John can take to reach the cow: 5 → 10 → 9 → 18 → 17. This takes 4 minutes.

Let’s now examine the step-by-step filling of the shortest distance array dist.

[image: image1.emf]0

1234567891011121314151617181920

[image: image2.emf]1011

[image: image3.emf]21012221222

[image: image4.emf]32101222122333332

[image: image5.emf]3210122212233434332

Algorithm implementation
Declare the array dist to store the shortest distances and a queue q to perform the breadth-first search.
#define MAX 200001

int dist[MAX];

queue<int> q;

The go function handles the transition from vertex v to vertex to. If dist[to] ≠ -1, it means that the vertex to has already been visited, and there is no need to visit it again.
void go(int v, int to)

{

 if (dist[to] != -1) return;
If the vertex to is not visited yet, add it to the queue q and update the value of dist[to] by adding one to the distance from vertex v.
 q.push(to);

 dist[to] = dist[v] + 1;

}

The function bfs implements a breadth-first search starting from the vertex start.
void bfs(int start)

{
Initialize the data necessary for the breadth-first search.
 memset(dist, -1, sizeof(dist));

 dist[start] = 0;

 q.push(start);

Start the main loop, which continues until the queue becomes empty.
 while (!q.empty())

 {
Extract vertex x from the front of the queue.
 int x = q.front(); q.pop();
If the position k, where the cow is located, is reached, terminate the search.
 if (x == k) return;
Consider all possible moves – to the right, to the left, and teleportation. If a move is possible, update the corresponding arrays.

 if (x + 1 < MAX) go(x, x + 1);

 if (x - 1 >= 0) go(x, x - 1);

 if (2 * x < MAX) go(x, 2 * x);

 }

}

The main part of the program. Read the input data. Run a breadth-first search starting from position n. Print the answer – the minimum number of minutes it takes for Farmer John to reach position k.

scanf("%d %d", &n, &k);

bfs(n);

printf("%d\n", dist[k]);
_1751718322.vsd
1

0

1

1

_1751718823.vsd
3

2

1

0

1

2

2

2

1

2

2

3

3

3

3

3

2

_1751718847.vsd
2

1

0

1

2

2

2

1

2

2

2

_1751718797.vsd
3

2

1

0

1

2

2

2

1

2

2

3

3

4

3

4

3

3

2

_1751718232.vsd
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

