798. Platforms
In older games one can run into the next situation. The hero jumps along the platforms that hang in the air. He must move himself from one side of the screen to the other. When the hero jumps from one platform to the neighboring, he spends |y2 – y1| energy, where y1 and y2 are the heights where these platforms hang. The hero can make a super jump that allows him to skip one platform, but it takes him 3 * | y3 – y1| energy.

You are given the heights of the platforms in order from the left side to the right. Find the minimum amount of energy to get from the 1-st (start) platform to the n-th (last). Print the list (sequence) of the platforms that the hero must pass.
Input. The first line contains the number of platforms n (2 ≤ n ≤ 100000). The second line gives n integers – the heights of the platforms, which absolute values are not grater than 400.
Output. Print in the first line the minimum amount of energy to get from the 1-st platform to the n-th. Print in the second line the number of platforms to pass. Give in the third line the list of these platforms.
	Sample input 1
	Sample output 1

	4

1 2 3 30
	29

4

1 2 3 4

	
	

	Sample input 2
	Sample output 2

	6

4 6 15 5 10 12
	12

5

1 2 4 5 6

SOLUTION
dynamic programming
Algorithm analysis
Let e[i] contains the minimum amount of energy sufficient to get from platform 1 to platform i. Obviously, e[1] = 0 (to get from the first platform to the first is zero energy), and e[2] = |y2 – y1|, since the second platform can only be reached from the first one.

In cell p[i], we’ll store the number of the platform from which we jumped to the i-th. Initially, we set p[1] = -1 (initially we are on the first platform), and also p[2] = 1.

[image: image1.emf]e

i

e

i-1

e

i-2

y

i

y

i-1

y

i-2

e

i-1

+ |

y

i

–

y

i-1

|

e

i-2

+ 3|

y

i

–

y

i-2

|

To the i-th platform (i ≥ 3) you can jump either from (i – 1) -th, spending e[i – 1] + |yi – yi-1| energy, or from (i – 2)-th, having made a super jump and spending e[i – 2] + 3·|yi – yi-2| energy. So

e[i] = min(e[i – 1] + |yi – yi-1| , e[i – 2] + 3·|yi – yi-2|)

If to the i-th platform the jump is performed from (i – 1) -th, then set p[i] = i – 1. If from (i – 2) -th, then we set p[i] = i – 2. To find the number of platforms on which jumps from the first to the n-th were performed, one should walk from the n-th platform to the first one each time moving from the i-th platform to p[i] -th.

Example
Consider the second test case. 6 platforms with specified heights are as follows:

[image: image2.emf]e

3

4

e

2

6

e

1

15

e

4

5

e

5

10

e

6

12

Calculate the spent energy when jumping:

e[1] = 0, p[1] = -1;

e[2] = |6 – 4| = 2, p[2] = 1;

e[3] = min(e[2] + |15 – 6|, e[1] + 3 * |15 – 4|) = min(11, 33) = 11, p[3] = 2;

[image: image3.emf]e

3

11

4

e

2

2

6

e

1

15

e

4

5

5

e

5

10

e

6

12

e

3

+ |5 –15| = 21

e

2

+ 3|5 –6| = 5

e[4] = min(e[3] + |5 – 15|, e[2] + 3 * |5 – 6|) = min(21, 5) = 5, p[4] = 2;

e[5] = min(e[4] + |10 – 5|, e[3] + 3 * |10 – 15|) = min(10, 26) = 10, p[5] = 4;

e[6] = min(e[5] + |12 – 10|, e[4] + 3 * |12 – 5|) = min(12, 26) = 12, p[6] = 5;

[image: image4.emf]y

i

e

i

p

i

4 6 15 5 10 12

0 2 11 5 10 12

-1 1 2 2 4 5

i 1 2 3 4 5 6

To restore the path, move from the final (6-th) platform back along the indexes of p[i]:

[image: image5.emf]6

p[6] = 5

5

p[5] = 4

4

p[4] = 2

2

p[2] = 1

1

The list of platforms to go through is as follows:

1, 2, 4, 5, 6

Exercise

Fill the arrays with the next input data.

[image: image6.emf]y

i

e

i

p

i

8 4 1 5 12 3

i 1 2 3 4 5 6

Algorithm realization
Declare the necessary arrays.

#define MAX 100001

int y[MAX], e[MAX], p[MAX], res[MAX];

Read the input data.

scanf("%d",&n);

for(i = 1; i <= n; i++) scanf("%d",&y[i]);

Set the initial values of the cells.
e[1] = 0; e[2] = abs(y[2] - y[1]);

p[1] = -1; p[2] = 1;

In the loop calculate the values e[i] and p[i] (3 ≤ i ≤ n), comparing e[i – 1] + |yi – yi-1| and e[i – 2] + 3*|yi – yi-2|.

for(i = 3; i <= n; i++)

{

 a = e[i-1] + abs(y[i] - y[i-1]);

 b = e[i-2] + 3 * abs(y[i] - y[i-2]);

 if (a < b)

 {

 e[i] = a; p[i] = i - 1;

 } else

 {

 e[i] = b; p[i] = i - 2;

 }

}

In the variable ptr we calculate the number of platforms that need to be passed. At the same time to the platform i we should jump from the platform p[i].

ptr = 0;

for(i = n; i > 0; i = p[i])

 res[ptr++] = i;

The minimum amount of energy that should be spent to get from the first platform to the n-th is equal to e[n]. The number of platforms to go through is ptr.

printf("%d\n%d\n",e[n],ptr);

Print the list of platform numbers.
for(i = ptr - 1; i >= 0; i--)

 printf("%d ",res[i]);

printf("\n");
Java realization

import java.util.*;
public class Main
{
 public static int MAX = 100001;
 static int y[] = new int[MAX];
 static int e[] = new int[MAX];
 static int p[] = new int[MAX];
 static int res[] = new int[MAX];
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 int n = con.nextInt();
 for(int i = 1; i <= n; i++)
 y[i] = con.nextInt();
 e[1] = 0; e[2] = Math.abs(y[2] - y[1]);
 p[1] = -1; p[2] = 1;
 for(int i = 3; i <= n; i++)
 {
 int a = e[i-1] + Math.abs(y[i] - y[i-1]);
 int b = e[i-2] + 3 * Math.abs(y[i] - y[i-2]);
 if (a < b)
 {
 e[i] = a; p[i] = i - 1;
 } else
 {
 e[i] = b; p[i] = i - 2;
 }
 }
 int ptr = 0;
 for(int i = n; i > 0; i = p[i])
 res[ptr++] = i;
 System.out.println(e[n] + "\n" + ptr);
 for(int i = ptr - 1; i >= 0; i--)
 System.out.print(res[i] + " ");
 System.out.println();
 con.close();
 }
}
Python realization
n = int(input())
y = [0] + list(map(int, input().split()))
e = [0] * (n + 1)
p = [0] * (n + 1)
e[1], e[2] = 0, abs(y[2] - y[1])
p[1], p[2] = -1, 1
for i in range(3, n+1):
 a = e[i - 1] + abs(y[i] - y[i - 1]);
 b = e[i - 2] + 3 * abs(y[i] - y[i - 2]);
 if a < b: e[i], p[i] = a, i - 1;
 else: e[i], p[i] = b, i - 2;
res = []
i = n
while i > 0:
 res.append(i)
 i = p[i]
print(e[-1])
print(len(res))
print(*res[::-1])

_1611472303.vsd
15

e6

e3

12

e4

5

4

e2

6

e1

e5

10

_1611484101.vsd
e3
11

4

e2
2

6

e1

15

e4
5

5

e5

10

e6

12

e2 + 3|5 – 6| = 5

e3 + |5 – 15| = 21

_1662745578.vsd
yi

ei

pi

4

6

15

5

10

12

0

2

11

5

10

12

-1

1

2

2

4

5

i

1

2

3

4

5

6

_1662745867.vsd
yi

ei

pi

8

4

1

5

12

3

i

1

2

3

4

5

6

_1611474606.vsd
6

p[6] = 5

5

p[5] = 4

4

p[4] = 2

2

p[2] = 1

1

_1611408703.vsd
ei

ei-1

ei-2

yi

yi-1

yi-2

ei-1 + |yi – yi-1|

ei-2 + 3|yi – yi-2|

