799. Buying tickets
There is a queue of n people to buy tickets to a musical premiere. Each person wants to buy exactly one ticket. Only one ticket-office was working, therefore ticketing was very slowly, bringing “guests” to despair. The smartest people quickly noticed that, as a rule, the cashier sells several tickets in one hand faster than when those same tickets are sold one by one. So, they proposed for several people standing in a row to give money to the first one of them, so that he would buy tickets for all.

However, to deal with speculators, the cashier decided to sell maximum of three tickets per person, so to agree with each other in such way can only two or three successive persons.

It is known that to sell one ticket for the i-th person in the queue takes ai seconds, to sell two tickets takes bi seconds, to sell three tickets takes ci seconds. Write a program that calculates the minimum time to serve all the customers.

Please note that tickets for a group of united people always buys the first one. Also, no one buys extra tickets for speeding up the process (i.e. the tickets that are not wanted).

Input. The first line contains the number of people in the queue n (1 ≤ n ≤ 5000). Then n triples of positive integers ai, bi, ci are given. Each of these numbers is not greater than 3600. People in the queue are numbering starting from the booking office.
Output. Print the minimum time in seconds to serve all customers.
	Sample input
	Sample output

	5

5 10 15

2 10 15

5 5 5

20 20 1

20 1 1
	12

SOLUTION
dynamic programming
Algorithm analysis
Let t[i] be the minimum time during which it is possible to serve customers from the first to the i-th. Set t[0] = 0. If there is one customer, he can buy himself a ticket in a1 seconds, therefore t[1] = a1. Two buyers will either buy tickets for themselves in a1 + a2 seconds, or they will cooperate and the first one will take two tickets in b1 seconds. Thus, t[2] = min (a1 + a2, b1). In the presence of three or more buyers, all types of cooperation described in the problem statement are possible, therefore, write the recurrence relation:
t[i] = min(t[i – 1] + ai, t[i – 2] + bi-1, t[i – 3] + ci-2)
If the i-th customer takes the ticket himself, then at least the time t[i – 1] + ai is spent.
If the (i – 1)-th customer takes two tickets (for himself and for the i-th), then at least the time t[i – 2] + bi-1 is spent.
If the (i – 2)-th customer takes three tickets (for himself, for the (i – 1)-th and for the i-th), then at least the time t[i – 3] + ci-2 is spent.

[image: image1.emf]a

i

i

a

i-1

i -1

a

i-2

i -2

a

i-3

i -3

a

i

t

i-1

b

i-1

t

i-2

c

i-2

t

i-3

It remains to find the minimum among the three expressions, which equals to the shortest time in which all i buyers can purchase tickets.
Algorithm realization
Store the values ai, bi, ci in arrays a, b, c.
#define MAX 5010

int a[MAX], b[MAX], c[MAX], t[MAX];
Read the input data.
scanf("%d",&n);

for(i = 1; i <= n; i++) scanf("%d %d %d",&a[i],&b[i],&c[i]);
Initialize the base cases.

t[0] = 0; t[1] = a[1]; t[2] = min(a[1] + a[2],b[1]);
In the loop compute the values of t[i].
for(i = 3; i <= n; i++)

 t[i] = min(t[i-1] + a[i], t[i-2] + b[i-1], t[i-3] + c[i-2]);

Print the result. The minimum time it takes to serve customers from the first to the n-th is t[n].
printf("%d\n",t[n]);
Java realization
import java.util.*;
public class Main
{
 public static int MAX = 5010;
 static int a[] = new int[MAX];
 static int b[] = new int[MAX];
 static int c[] = new int[MAX];
 static int t[] = new int[MAX];
 public static int min(int a, int b, int c)
 {
 return Math.min(Math.min(a,b),c);
 }
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 int n = con.nextInt();
 for(int i = 1; i <= n; i++)
 {
 a[i] = con.nextInt();
 b[i] = con.nextInt();
 c[i] = con.nextInt();
 }
 t[0] = 0; t[1] = a[1]; t[2] = Math.min(a[1] + a[2],b[1]);
 for(int i = 3; i <= n; i++)
 t[i] = min(t[i-1] + a[i], t[i-2] + b[i-1], t[i-3] + c[i-2]);
 System.out.println(t[n]);
 con.close();
 }
}
Python realization
n = int(input())
a = [0] * 5001
b = [0] * 5001
c = [0] * 5001
for i in range(1,n+1):
 a[i], b[i], c[i] = map(int, input().split())
t = [0] * (n+1)
t[0] = 0;
t[1] = a[1];
if n > 1 : t[2] = min(a[1] + a[2], b[1]);
for i in range(3, n+1):
 t[i] = min(t[i-1] + a[i], t[i-2] + b[i-1], t[i-3] + c[i-2])
print(t[-1])

_1674997123.vsd
ai

i

ai-1

i - 1

ai-2

i - 2

ai-3

i - 3

ai

ti-1

bi-1

ti-2

ci-2

ti-3

