8553. Computer network
A computer network comprises n computers, numbered from 0 to n – 1. Each one, after receiving a message, passes it to some other computers. If a message from computer x can reach a computer y, this does not necessarily mean that a message from computer y reaches the computer x. The system administrators want to determine the minimum number of computers from which a message has to be sent in order to reach all the computers in the network.

For better transmission of messages, they believe that the network needs to be extended by adding new connections between some computers, so when sending a message from an arbitrary computer it will be distributed to all others. For this purpose, it is necessary to determine the minimum number of new connections to be added, so that each of the computers can be used as initial for distribution of messages.

Write a program cnet that finds the minimal number of computers from which a message needs to be sent in order to be distributed to all computers in the network and finds the minimum number of new connections that need to be added, in order to allow a message, sent from each of the computers, to reach every other computer in the network.

Input. The first line contains two integers n (1 ≤ n ≤ 1600) and m (0 ≤ m ≤ 120000), representing the number of computers and the number of connections between them. Each of the next m lines describe one available connection. The first number is the number of the computer sending the message, and the second number is the number of the computer receiving the message.

Output. On a single line print two integers – the minimum number of computers that are used as initial for distributing a message to the whole network and the minimum number of additional connections needed to extend the network in a way that a message sent from an arbitrary chosen computer, will reach all the others.
	Sample input 1
	Sample output 1

	5 6

0 1

0 3

0 2

1 3

1 4

4 0
	1 2

	
	

	Sample input 2
	Sample output 2

	6 12

0 1

0 2

1 0

1 2

2 0

2 1

3 4

3 5

4 3

4 5

5 3

5 4
	2 2

SOLUTION
graphs – strongly connected components
Algorithm analysis
Find the strongly connected components in the graph. If there is one component (the graph is strongly connected), then a message for the entire network can be sent from any one computer, and the number of additional connections required is 0.

Let the graph be not strongly connected. Consider its condensation. For each connected component, find out whether there are outgoing and incoming edges. If some component does not have incoming edges, then in order to send a message to entire network, the message must be sent from a vertex belonging to this component. For the condensation below, the message should be sent from 3 computers.

[image: image1.emf]send

send

send

The message can be passed from any computer to any other in the network only if the graph is strongly connected. The minimum number of edges should be added to the original graph in such way as to make it strongly connected. For each connected component there must be both an incoming and outgoing edge. Let:

с1 is the number of components without incoming edges (on the picture с1 = 3);

с2 is the number of components without outgoing edges (on the picture с2 = 2);

Then its always possible to add max(с1, с2) edges to make the graph strongly connected. For our example max(с1, с2) = max(3, 2) = 3. To get a strongly connected graph, it is enough to add 3 edges.

[image: image2.emf]
Example
In the first test case the graph contains three strongly connected components.

[image: image3.emf]0 1

2

3 4

There is one component that has no incoming edges: {0, 1, 4}, с1 = 1;

There are two components that has no outgoing edges: {2}, {3}, с2 = 2;

The message that should be distributed throughout the network, must be sent from components that have no incoming edges. We have one such component. The mailing can be done from one vertex (0, 1 or 4).

In order for the whole graph to become strongly connected, it is necessary to create edges outgoing from vertices 2 and 3, and at least one of the edges must be incoming into the component consisting of vertices {0, 1, 4}. For example, creating the following edges will make the graph strongly connected:

[image: image4.emf]0 1

2

3 4

Algorithm realization
The input graph is stored in the adjacency list g. The reverse graph (the graph where all edge directions are reversed) is stored in the adjacency list gr. Declare also some additional arrays.

vector<vector<int> > g, gr;

vector<int> used, top, color;

vector<int> in, out;

The function dfs1 implements depth first search on the input graph. In the array top store the vertices in the order in which the depth first search ends their processing.

void dfs1(int v)

{

 used[v] = 1;

 for (int to : g[v])

 if (!used[to]) dfs1(to);

 top.push_back(v);

}

The function dfs2 implements depth first search on the reversed graph. All vertices that will be traversed as a result of a recursive call of dfs2 function belong to one strongly connected component. Color all the visited vertices with color c.

void dfs2(int v, int c)

{

 color[v] = c;

 for (int to : gr[v])

 if (color[to] == -1) dfs2(to, c);

}

The main part of the program. Read the input data. Build the reversed graph.

scanf("%d %d", &n, &m);

g.resize(n + 1);

gr.resize(n + 1);

for (i = 0; i < m; i++)

{

 scanf("%d %d", &a, &b);

 g[a].push_back(b);
 gr[b].push_back(a);

}

Start the depth first search on the input graph. The sequence in which the graph vertices processing is completed is stored in the array top.

used.resize(n);

for (i = 0; i < n; i++)

 if (!used[i]) dfs1(i);

Start the depth first search on the reversed graph. Iterate the vertices of the reversed graph in the order of traversing the array top from right to left (from end to start). The vertices included in one strongly connected component are colored with the same color. The current color is in the variable c.

color.assign(n, -1);

reverse(top.begin(), top.end());

c = 0;

for (int v : top)

 if (color[v] == -1) dfs2(v, c++);

The variable c contains the number of connected components. Set in[i] = 1 if there is no incoming edge to the connected component number i (and in[i] = 0 otherwise). Set out[i] = 1 if there is no outgoing edge from the connected component number i (and out[i] = 0 otherwise).

in.assign(c, 1);

out.assign(c, 1);

for (i = 0; i < g.size(); i++)

 for (int to : g[i])

If an edge i → to connects different connected components, then component number color[to] has an incoming edge, and component number color[i] has an outgoing edge.

 if (color[i] != color[to])

 {

 in[color[to]] = 0;

 out[color[i]] = 0;

 }

Count the number of components that do not have incoming (с1) and outgoing (с2) edges.

c1 = c2 = 0;

for (i = 0; i < in.size(); i++)

{

 if (in[i]) c1++;

 if (out[i]) c2++;

}

Compute and print the answer.
if (c == 1) ans = 0; else ans = max(c1, c2);

printf("%d %d\n", c1, ans);

Java realization
import java.util.*;
public class Main
{
 static ArrayList<Integer>[] g, gr;

 static int used[], color[], in[], out[];
 static Vector<Integer> top = new Vector<Integer>();
 static void dfs1(int v)
 {
 used[v] = 1;
 for(int i = 0; i < g[v].size(); i++)
 {
 int to = g[v].get(i);
 if (used[to] == 0) dfs1(to);
 }
 top.add(v);
 }
 static void dfs2(int v, int c)
 {
 color[v] = c;
 for(int i = 0; i < gr[v].size(); i++)
 {
 int to = gr[v].get(i);
 if (color[to] == -1) dfs2(to,c);
 }
 }
 @SuppressWarnings("unchecked")
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 int n = con.nextInt();
 int m = con.nextInt();
 g = new ArrayList[n];
 for(int i = 0; i < n; i++)
 g[i] = new ArrayList<Integer>();
 gr = new ArrayList[n];
 for(int i = 0; i < n; i++)
 gr[i] = new ArrayList<Integer>();
 for (int i = 0; i < m; i++)
 {
 int a = con.nextInt();
 int b = con.nextInt();
 g[a].add(b);
 gr[b].add(a);
 }
 used = new int[n];
 for(int i = 0; i < n; i++)
 if (used[i] == 0) dfs1(i);
 color = new int[n];
 Arrays.fill(color, -1);
 int c = 0;
 for(int i = 0; i < n; i++)
 {
 int v = top.get(n-i-1);
 if (color[v] == -1) dfs2(v,c++);
 }
 in = new int[c];
 Arrays.fill(in, 1);
 out = new int[c];
 Arrays.fill(out, 1);
 for(int i = 0; i < g.length; i++)
 for(int j = 0; j < g[i].size(); j++)
 {
 int to = g[i].get(j);
 // check edge i -> j if they in the same scc.
 if (color[i] != color[to])
 {
 in[color[to]] = 0;
 out[color[i]] = 0;
 }
 }
 int c1 = 0, c2 = 0;
 for(int i = 0; i < in.length; i++)
 {
 if (in[i] == 1) c1++;
 if (out[i] == 1) c2++;
 }
 int ans = 0;
 if (c != 1) ans = Math.max(c1,c2);
 System.out.println(c1 + " " + ans);
 con.close();
 }
}
_1623855688.vsd

_1668780859.vsd
0

1

2

3

4

_1668781506.vsd
0

1

2

3

4

_1623854601.vsd

