8709. Valya and a letter
Valya was tired of social networks and decided to write a letter to her friend Sasha on a rectangular sheet of paper. The lengths of the sides of the sheet are equal to n and m centimeters. Then she found a rectangular envelope with side lengths equal to h and w centimeters.

Unfortunately, the letter may not fit into the envelope, in this case Valya have to fold the letter several times. In one action, Valya can fold the letter in half vertically or horizontally.

After Valya, if necessary, folds the letter in half several times, she plans to put it into the envelope. Valya is a very neat girl, she always puts a letter in an envelope so that its sides are parallel to the sides of the envelope. A letter is placed in an envelope if its sides are not longer than the corresponding sides of the envelope. Before putting the letter into the envelope, Valya can rotate it 90 degrees. For example, if the lengths of the sides of the letter are 10 and 20 centimeters, and the lengths of the sides of the envelope are 20 and 10 centimeters, Valya does not need to fold the letter, she can rotate it 90 degrees and put into an envelope.

Valya does not want the letter to be very wrinkled, so she wants to fold the letter in half the minimum number of times. Help her figure out the minimum number of times she has to fold the letter before she can put it in the envelope.

Input. The first line contains four integers n, m, h and w (1 ≤ n, m, h, w ≤ 1018), the lengths of the sides of the letter and envelope, respectively.

Output. Print one number, the minimum number of times Valya has to fold the letter so that she can put it into the envelope.

	Sample input 1
	Sample output 1

	10 20 20 10
	0

	
	

	Sample input 2
	Sample output 2

	3 3 2 2
	2

SOLUTION
recursion
Algorithm analysis
First, let’s solve the problem when the sheet sizes are equal to n and m, and the envelope sizes are h and w. To do this, we implement the function solve(n, m, h, w). Then we rotate the sheet 90 degrees and solve the problem for sheet m * n and envelope h * w by calling the solve(m, n, h, w) function. The smallest of these values will be the answer.

Consider the implementation of solve(n, m, h, w).

· If h ≥ n and w ≥ m, then the letter can be placed in the envelope and we return 0 (the sheet does not need to be folded);
· If h < n, then the letter should be folded in half along the side of length n. To avoid working with real numbers, instead of dividing n by 2 (n / 2 can become real), we’ll increase the size h of the envelope by 2 times. The number of letter foldings will become equal to
1 + solve(n, m, 2 * h, w)
· If w < m increase the size w of the envelope by 2 times. The number of letter foldings will become equal to
1 + solve(n, m, h, 2 * w)
Example
Consider the second test. The number of foldings is
solve(3, 3, 2, 2) = 1 + solve(3, 3, 4, 2) = 1 + 1 + solve(3, 3, 4, 4) = 2
Algorithm realization
The solve(n, m, h, w) function solves the problem for a sheet with dimensions n and m, and an envelope with dimensions h and w.

long long solve(long long n, long long m, long long h, long long w)

{

 if (h >= n && w >= m) return 0;

 if (h < n) return 1 + solve(n, m, 2 * h, w);

 return 1 + solve(n, m, h, 2 * w); // w < m
}

The main part of the program. Read the input data.
scanf("%lld %lld %lld %lld", &n, &m, &h, &w);
Compute and print the answer.
printf("%lld\n", min(solve(n, m, h, w), solve(m, n, h, w)));

Python realization
The solve(n, m, h, w) function solves the problem for a sheet with dimensions n and m, and an envelope with dimensions h and w.

def solve(n, m, h, w):
 if h >= n and w >= m:
 return 0
 if h < n:
 return 1 + solve(n, m, h * 2, w)
 return 1 + solve(n, m, h, w * 2)
The main part of the program. Read the input data.
n, m, h, w = map(int, input().split())
Compute and print the answer.
res = min(solve(n, m, h, w), solve(m, n, h, w))
print(res)
