9032. Roads renewal
In Berland, there are n cities connected by m bidirectional roads. Roads cannot connect a city to itself, and there can be at most one road between any pair of cities. It is not guaranteed that it is possible to travel from any city to any other using only the existing roads.

The mayor of one city, Gadji Ibrahim, decided to reform the road system and instructed the Ministry of Transport to carry out the changes. Under the new plan, every road must become one-way, meaning it will connect two cities in only one direction — from one city to another.

To avoid public dissatisfaction, the reform must be carried out so that the number of isolated cities is minimized. A city is considered isolated if there are no roads entering it (outgoing roads from such a city are allowed).

Help Gadji Ibrahim determine the minimum possible number of isolated cities after the reform.

Input. The first line contains two positive integers n and m (2 ≤ n ≤ 105, 1 ≤ m ≤ 105) – the number of cities and the number of roads in Berland.

Each of the next m lines describes a road: the i-th road is given by two distinct integers xi and yi (1 ≤ xi, yi ≤ n, xi ≠ yi) – the indices of the cities connected by the i-th road.

It is guaranteed that there is at most one road between any pair of cities. However, it is not guaranteed that one can travel from any city to any other using only the existing roads.

Output. Print a single integer – the minimum number of isolated cities after the reform.

	Sample input 1
	Sample output 1

	4 3

2 1

1 3

4 3
	1

	
	

	Sample input 2
	Sample output 2

	5 5

2 1

1 3

2 3

2 5

4 3
	0

SOLUTION
tree
Algorithm analysis

Consider an undirected graph and identify its connected components. If a connected component is a tree (that is, it contains no cycles), its edges can always be oriented so that exactly one vertex has no outgoing edges. This means that in a tree component, the minimum possible number of isolated cities after the reform is 1 (zero is impossible). For example, the root of the tree can be chosen as the isolated city.

[image: image1.emf]1

2 3

4 5

1

2 3

4 5

6

7 8

If a connected component contains a cycle, its edges can always be oriented so that every vertex has at least one outgoing edge.

[image: image2.emf]2

4 1

3

5

6

10

9

7

8

The answer to the problem is the number of connected components that do not contain cycles.
Example
Consider the first example. The graph on the left is the initial one, and the graph on the right is the graph after the reform. Vertex 1 has no outgoing edges.

[image: image3.emf]2

4

1

3

2

4

1

3

Let’s consider the second example. On the left is the original graph, and on the right is the graph after the reform. Each vertex has exactly one outgoing edge.

[image: image4.emf]2

4

1

3

5

2

4

1

3

5

Algorithm implementation
Declare an adjacency list g to store the structure of the graph, as well as an array used to mark already visited vertices.
vector<vector<int> > g;

vector<int> used;

The function dfs performs a depth-first search starting from vertex v. The parent of vertex v is vertex p.
void dfs(int v, int p = -1)

{

 used[v] = 1;
 for (int to : g[v])

 {

 if (to == p) continue;
If a cycle is detected in the current connected component, set flag = 0.
 if (used[to] == 1) flag = 0;

 else dfs(to, v);

 }

}

The main part of the program. Read the input data.
scanf("%d %d", &n, &m);

g.resize(n + 1);

used.resize(n + 1);
Read m edges and construct the graph.
for (i = 0; i < m; i++)

{

 scanf("%d %d", &a, &b);

 g[a].push_back(b);

 g[b].push_back(a);

}

Perform depth-first search on a disconnected graph. The variable res stores the number of connected components that contain no cycles.
res = 0;

for (i = 1; i <= n; i++)

{

 if (used[i] == 0)

 {
Before processing each component, set flag = 1. If a cycle is detected during the traversal, then after the dfs call completes, the value of flag will become 0.

 flag = 1;

 dfs(i);

 res += flag;

 }

}

Print the answer.

printf("%d\n", res);
_1737735353.vsd
6

10

9

7

2

4

8

1

3

5

_1737742374.vsd
2

4

1

3

2

4

1

3

_1737742521.vsd
5

2

4

1

3

2

4

5

1

3

_1737735037.vsd
1

2

3

4

5

1

2

3

4

5

6

7

8

