9614. Coin change problem
You are working as a cashier at a cheerful fair, and you have coins of different denominations. An unlimited number of coins is available for each denomination, and the value of each denomination is known. Determine the number of ways to pay a given amount using the available coin denominations.

For example, if you have 4 coin denominations with values 8, 3, 1, and 2, the amount 3 can be paid in the following ways: {1, 1, 1}, {1, 2}, and {3}.

Input. The first line contains two integers: the amount n (1 ≤ n ≤ 250) and the number of coin denominations m (1 ≤ m ≤ 50). The second line contains m integers ci (1 ≤ ci ≤ 50), representing the values of the coin denominations. All ci values are distinct.

Output. Print the number of ways to pay the amount n.

	Sample input 1
	Sample output 1

	4 3

1 2 3
	4

	
	

	Sample input 2
	Sample output 2

	10 4

2 5 3 6
	5

SOLUTION
dynamic programming
Algorithm analysis
Let f(k, n) denote the number of ways to make the sum n using the first k denominations of coins. This number is equal to the sum of two quantities:

· the number of ways to make the sum n using the first (k – 1) denominations (i.e., without using the k-th denomination), and

· the number of ways to make the sum (n – ak) using all k denominations.

Thus, we have the following relationship:
f(k, n) = f(k – 1, n) + f(k, n – ak)

Initially, we set f(0, 0) = 1, f(0, n) = 0 for n > 0.
Example
Let’s consider the second example. Here, the sum n = 10 and there are k = 4 denominations. The last denomination has a value of ak = 6. According to the relationship, we have:
f(4, 10) = f(3, 10) + f(4, 4)

The sum of 10 can be made using the first three denominations {2, 5, 3} in 4 ways:

[image: image1.emf]f(3,10)= 4

5 + 5

2 + 2 + 2 + 2 + 2

2 + 3 + 5

2 + 2 + 3 + 3

The sum of 4 can be made using all four denominations {2, 5, 3, 6} in 1 way:

[image: image2.emf]f(4,4)= 1 2 + 2

Algorithm realization
Declare the arrays.
long long dp[51][251];

int a[51];

The value of f(k, n) will be stored in dp[k][n].
long long f(int k, int n)

{

 if (k == 0 && n == 0) return 1;

 if (k == 0 || n < 0) return 0;

 if (dp[k][n] != -1) return dp[k][n];

 return dp[k][n] = f(k - 1, n) + f(k, n - a[k]);

}

The main part of the program. Read the input data.

memset(dp, -1, sizeof(dp));

scanf("%d %d", &n, &m);

for (i = 1; i <= m; i++)

 scanf("%d", &a[i]);

Print the required number of ways.

printf("%lld\n", f(m, n));
Python realization
The value of f(k, n) will be stored in dp[k][n].
def f(k, n):
 if k == 0 and n == 0:
 return 1
 if k == 0 or n < 0:
 return 0
 if dp[k][n] != -1:
 return dp[k][n]
 dp[k][n] = f(k - 1, n) + f(k, n - a[k])
 return dp[k][n]
The main part of the program. Read the input data.

n, m = map(int, input().split())
a = [0] + list(map(int, input().split()))
dp = [[-1 for _ in range(n + 1)] for _ in range(m + 1)]
Print the required number of ways.

print(f(m, n))
_1786816711.vsd
f(3, 10) = 4

5

+

5

2

+

2

+

2

+

2

+

2

2

+

3

+

5

2

+

2

+

3

+

3

_1786816732.vsd
f(4, 4) = 1

2

+

2

