9616. Anti-palindromic strings
Two integers n and m are given. Find the number of strings of length n, which symbols belong to the alphabet of size m, that do not contain palindromes of length more than one as substrings.

Input. First line contains the number of test cases t. Each test is a separate line with two integers n and m (1 ≤ n, m ≤ 109).

Output. For each test case print in a separate line the required number of strings taken by modulo 109 + 7.
	Sample input
	Sample output

	2

5 6

6 5
	1920

1620

SOLUTION
exponentiation
Algorithm analysis
If a string does not contain a substring that is a palindrome of length 2 or length 3, then it does not contain a substring that is a palindrome of length greater than one.
If n = 1, then a string of length 1 can contain any of m letters. The required number of strings equals to m.
If m = 1 and n > 1, the answer is 0, since there is only one string aa..aa and it contains the palindrome aa.
If n = 2, then the first position of the string can contain any of m letters, and the second position can contain any of m – 1 letters (the letters in the first and second positions must not coincide, forming a palindrome). The number of strings equals to (m * (m – 1)) mod 109 + 7.
Let the length of the input string be greater than 2. Any of m letters can be in the first position, and any of m – 1 letters can be in the second position. The third position must be different from the second (the second and third letters must not form a palindrome). The third position must be different from the first (the first three letters must not form a palindrome). This means that any of m – 2 letters can be in the third position.

[image: image1.emf]mm-1m-2m-2...m-2

1234n

Following this logic, we conclude that the letter at the i-th position must differ from the letters at positions (i – 1) and (i – 2). The number of required string equals to (m * (m – 1) * (m – 2)n – 2) mod 109 + 7.

Algorithm realization
Declare the module that will be used for calculations.
#define MOD 1000000007

Function powmod finds the value of xn mod m.
long long powmod(long long x, long long n, long long m)

{

 if (n == 0) return 1;

 if (n % 2 == 0) return powmod((x * x) % m, n / 2, m);

 return (x * powmod(x, n - 1, m)) % m;

}

The main part of the program. Read the input data.
scanf("%d", &tests);

while (tests--)

{

 scanf("%lld %lld", &n, &m);
Calculate the answer depending on the values of n and m.
 if (n == 1) res = m; else
 if (m == 1) res = 0; else // n > 1, m = 1: aa....a
 if (n == 2) res = (m * (m - 1)) % MOD; else
 res = ((m * (m - 1)) % MOD * powmod(m - 2, n - 2, MOD)) % MOD;
Print the answer.
 printf("%lld\n", res);

}

_1659770833.vsd
m

m-1

m-2

m-2

...

m-2

1

2

3

4

n

