9632. The best team
Today, n programmers have gathered. Each programmer has a rating that reflects his strength. The rating is an integer between 0 and 109. Your rating as a programmer is m. From all the programmers gathered today, you want to choose two for your team. They must be selected in such a way that their total rating is maximized but does not exceed your rating, as you want to be the leader of this team.

Input. The first line contains two integers: n (2 ≤ n ≤ 105) – the number of programmers, and m (0 ≤ m ≤ 109) – your rating. The second line contains n integers r1, r2, ..., rn (0 ≤ ri ≤ 109) – the ratings of the programmers.

Output. Print a single integer – the maximum sum of the ratings of the selected programmers, or -1 if it is impossible to find such two people.

	Sample input 1
	Sample output 1

	5 8

5 3 4 6 5
	8

	
	

	Sample input 2
	Sample output 2

	7 19

8 4 25 1 20 5 12
	17

	
	

	Sample input 3
	Sample output 3

	4 76

38 41 39 40
	-1

SOLUTION
two pointers
Algorithm analysis
Sort the programmers’ ratings in the array v. To find two programmers with the maximum total rating, we’ll use the two-pointer technique.
Initialize the pointer low = 0 at the beginning of the array and the pointer high = n – 1 at the end of the array.
Among all possible sums v[low] + v[high], not exceeding m, find the maximum. If v[low] + v[high] ≤ m, move the low pointer forward. Otherwise, move the high pointer backward. Continue this process until the pointers meet.
Example
Let’s consider the second test. Sort the numbers and initialize the pointers. Simulate the algorithm’s execution. In this case, m = 19: we are looking for two numbers with the maximum sum that does not exceed 19.

[image: image1.emf]1 4 5 8 12 20 25

low high

1 + 25 > 19, high--

mx = -1

[image: image2.emf]mx = -1 1 4 5 8 12 20 25

low high

1 + 20 > 19, high--

[image: image3.emf]mx = 13 1 4 5 8 12 20 25

low high

1 + 12 ≤19, low++

[image: image4.emf]mx = 16 1 4 5 8 12 20 25

low high

4 + 12 ≤19, low++

[image: image5.emf]mx = 17 1 4 5 8 12 20 25

low high

5 + 12 ≤19, low++

[image: image6.emf]mx = 17 1 4 5 8 12 20 25

low high

8 + 12 > 19, high--

[image: image7.emf]mx = 17 1 4 5 8 12 20 25

low, high

Algorithm realization
Read the input data.
scanf("%d %d", &n, &m);

v.resize(n);

for (i = 0; i < n; i++)

 scanf("%d", &v[i]);

Sort the programmers’ ratings.
sort(v.begin(), v.end());

Initialize the pointers. The variable mx stores the maximum sum of two elements.
int mx = -1, low = 0, high = n - 1;
The pointer low is moved forward, and the pointer high is moved backward.
while (low < high)

{
Among all possible sums v[low] + v[high] that do not exceed m find the maximum. If v[low] + v[high] ≤ m, move low forward. Otherwise, move high backward.
 if (v[low] + v[high] <= m)

 {

 mx = max(mx, v[low] + v[high]);

 low++;

 }

 else high--;

}

Print the answer.

printf("%d\n", mx);

_1715062995.vsd
1

4

5

8

12

20

25

low

high

1 + 20 > 19, high--

mx = -1

_1715063059.vsd
1

4

5

8

12

20

25

low

high

4 + 12 ≤ 19, low++

mx = 16

_1715063121.vsd
1

4

5

8

12

20

25

low

high

8 + 12 > 19, high--

mx = 17

_1715063147.vsd
1

4

5

8

12

20

25

low, high

mx = 17

_1715063094.vsd
1

4

5

8

12

20

25

low

high

5 + 12 ≤ 19, low++

mx = 17

_1715063030.vsd
1

4

5

8

12

20

25

low

high

1 + 12 ≤ 19, low++

mx = 13

_1715062964.vsd
1

4

5

8

12

20

25

low

high

1 + 25 > 19, high--

mx = -1

