9655. Mr. Nine and his love for mangoes
Mr.Nine was roaming casually in the Parralel Universe in his mid-semester breaks, suddenly he comes across a mango tree. He loves mangoes so he decides to pluck some mangoes from it but suddenly a fairy appears and tells him to solve a complex problem to get the mangoes. She tells him that there are n nodes in the trees, and he is given two nodes u and v. Now she asks him how many pair of nodes are present in tree in which shortest path between them does not contain node v after node u (for example u → a → b → v is also not allowed where a and b are two different nodes). If he is able to tell the correct number of pair of nodes then he will get all the mangoes, but he is unable to do and needs your help.

Input. The first line consists of integers n (1 ≤ n ≤ 300005), u and v. The following n – 1 lines consist of two integers x and y denoting there is an edge between vertices x and y (1 ≤ x, y ≤ n).
Output. Find out the total number of pair of nodes.
	Sample input
	Sample ouput

	3 1 3

1 2

2 3
	5

SOLUTION
graphs – depth frst search
Algorithm analysis
Since the input is a tree, there is only one path between u and v. Let this path have the form: u → s → … → t → v. Fill the parent array so that we can find the vertices s (that follows u) and t (that comes before v).

[image: image1.emf]u s t v

c

1

c

2

Let c1 be the number of vertices in the subtree with the root u, provided that the edge (u, s) is removed. Let c2 be the number of vertices in the subtree with the root v, provided that the edge (t, v) is removed. The number of paths that follow u after v is c1 * c2.

The total number of paths on the graph is n * (n – 1), where n is the number of vertices. The graph is undirected, the path from a to b and from b to a is considered different. The number of required pairs of vertices is

n * (n – 1) – c1 * c2
Example
Graph from the sample has the form:

[image: image2.emf]1 2 3

There are 5 possible pairs:

· (1, 2) : path 1 → 2

· (2, 3) : path 2 → 3

· (3, 2) : path 3 → 2

· (2, 1) : path 2 → 1

· (3, 1) : path 3 → 2 → 1

Nine cannot choose a pair (1, 3), since the shortest path between them will be 1 → 2 → 3 and it is not acceptable, since it contains v = 3 after u = 1, which is not acceptable.
Algorithm realization
Declare an adjacency list of graph g and arrays.

vector<vector<int> > g;

vector<int> used, parent;

The dfs function implements depth first search. Construct an array of ancestors parent.

void dfs(int v)

{

 used[v] = 1;

 for (int i = 0; i < g[v].size(); i++)

 {

 int to = g[v][i];

 if (used[to] == 0)

 {

 parent[to] = v;

 dfs(to);

 }

 }

}

The dfs1 function implements depth first search from the vertex v. In the variable c1 we count the number of vertices in the subtree with the root v, provided that the transition to the vertex s is prohibited.

void dfs1(int v)

{

 used[v] = 1;

 c1++;

 for (int i = 0; i < g[v].size(); i++)

 {

 int to = g[v][i];

 if (to == s) continue;

 if (used[to] == 0) dfs1(to);

 }

}

The dfs2 function implements depth first search from the vertex v. In the variable c2 we count the number of vertices in the subtree with the root v, provided that the transition to the vertex t is prohibited.

void dfs2(int v)

{

 used[v] = 1;

 c2++;

 for (int i = 0; i < g[v].size(); i++)

 {

 int to = g[v][i];

 if (to == t) continue;

 if (used[to] == 0) dfs2(to);

 }

}

The main part of the program. Read the input data. Construct a graph.

scanf("%d %d %d", &n, &start, &finish);

g.resize(n + 1);

used.resize(n + 1);

parent.resize(n + 1);

for (i = 0; i < n - 1; i++)

{

 scanf("%d %d", &a, &b);

 g[a].push_back(b);

 g[b].push_back(a);

}

Start the depth first search from the vertex start.

dfs(start);
Using the parent array, we find the vertices s and t:

start → s → ... → t → finish
t = parent[finish];

s = finish;

while (parent[s] != start) s = parent[s];

Using the depth first search, compute the values of c1 and c2.

c1 = 0;

used.clear(); used.resize(n + 1);

dfs1(start);

c2 = 0;

used.clear(); used.resize(n + 1);

dfs2(finish);

Print the answer.
res = 1LL * n * (n - 1) - c1 * c2;

printf("%lld\n", res);

_1685562099.vsd
u

s

t

v

_1760258895.vsd
1

2

3

