9759. ABB
Fernando was hired by the University of Waterloo to complete a recently started project. The university plans to build a prestigious street with bungalows outside the campus for important international guests and staff.

Currently, the street is only partially developed: it begins at the lakeshore and stretches toward the forest, where it ends. Fernando’s task is to finish the development of the street by constructing additional bungalows at its end, near the forest. All the existing houses are located on one side of the street, and the new bungalows must be placed on the same side. The existing bungalows differ in type and are painted in various colors.

In Fernando’s opinion, the street looks somewhat chaotic. He worries that the new houses, designed in his own style, might only add to this impression. To bring an element of order, he has decided to choose the colors of the new bungalows in such a way that the entire color sequence of houses on the street becomes symmetric. This means that the sequence of colors should be read the same from both ends of the street.

Among other tasks, Fernando is interested in finding out the minimum number of new bungalows that must be constructed and painted accordingly in order to complete the project with the intended symmetry.

Input. The first line contains an integer n (1 ≤ n ≤ 4 * 105) – the number of already built bungalows.
The second line contains a sequence of their colors, listed in order from the beginning of the street at the lake. It is a string of length n consisting of lowercase Latin letters from ‘a’ to ‘z’, each representing a specific color.
Output. Print the minimum number of bungalows that need to be added to the end of the street and painted accordingly so that the entire color sequence becomes symmetric.
	Sample input 1
	Sample output 1

	3

abb
	1

	Sample input 2
	Sample output 2

	12

recakjenecep
	11

SOLUTION
z-function
Algorithm analysis
A minimal number of characters must be added to the given string to turn it into a palindrome.
To do this, we need to find the longest palindromic suffix of the string, then take the prefix before the start of that palindrome, reverse it, and append it to the original string.
For example, the longest palindromic suffix of the string abcxqx is xqx.
The prefix before it is abc. We reverse it (getting cba) and append it to the original string.

[image: image1.emf]abcxqxabcxqxcba

Consider the string rs = reverse(s) + s. Compute the z-function for this string.

[image: image2.emf]xqxcbaabcxqx

001000000301

3

01234567891011

z[9] = 3

Next, find the smallest index i (such that i ≥ n) for which the equality i + z[i] = 2n holds. Among such indices, the value z[i] will be maximal. The minimum number of characters that need to be appended to the original string to form a palindrome is n – z[i].

For the string “abcxqx” (length n = 6), the required index is i = 9, since 9 + z[9] = 9 + 3 = 12 = 2 * 6.
Example
Let’s consider the first example. Compute the z-function for the string reverse(s) + s = “bba” + “abb” = “bbaabb”.

[image: image3.emf]bbaabb

011021

1

012345

z[4] = 2

The smallest index i (i ≥ n) for which the equality i + z[i] = 2n holds is i = 4. Indeed: 4 + z[4] = 4 + 2 = 6 = 2 * 3. Therefore, the answer is n – z[i] = 3 – 2 = 1. That is, it is enough to add a single character ‘a’ to the string “abb” to obtain the palindrome “abba”.
Algorithm implementation
The function z constructs and returns the z-function for the string s.
vector<int> zfun(string s)

{

 int i, l, r, len = s.size();

 vector<int> z(len, 0);

 l = r = 0;

 for (i = 1; i < len; i++)

 {

 if (i <= r) z[i] = min(r - i + 1, z[i - l]);

 while (i + z[i] < len && s[z[i]] == s[i + z[i]]) z[i]++;

 if (i + z[i] - 1 > r)

 {

 l = i;

 r = i + z[i] - 1;

 }

 }

 return z;

}

The main part of the program. Read the input string s.
cin >> n;

cin >> s;

Construct the string rs = reverse(s) + s.
rs = s;

reverse(rs.begin(), rs.end());

rs += s;

Compute the z-function for the string rs.
z = zfun(rs);

Find the smallest index i (i ≥ n) for which the equality i + z[i] = 2n holds. Among all such indices, the value of z[i] will be the largest.
for (i = n; i < rs.size(); i++)

 if (i + z[i] == 2 * n)

 {
Print the answer.
 cout << n - z[i] << endl;

 break;

 }

_1788609410.vsd
x

q

x

c

b

a

a

b

c

x

q

x

0

0

1

0

0

0

0

0

0

3

0

1

3

0

1

2

3

4

5

6

7

8

9

10

11

z[9] = 3

_1788610987.vsd
b

b

a

a

b

b

0

1

1

0

2

1

1

0

1

2

3

4

5

z[4] = 2

_1718452612.vsd
a

b

c

x

q

x

a

b

c

x

q

x

c

b

a

