STRING REPRESENTATION AND HANDLING IN C
In this article we shall not describe the class string that is declared in Standart Template Library (STL), but show how to work with strings in standart C before STL appeared.

Strings, or sequences of characters, are represented as arrays of char elements. For example, when a programmer wants to represent a char array s having 10 elements it is declared in such way:
char s[10];
This means the character array has 10 storage locations allocated where it can store up to a maximum of 10 characters. The first element of the string is s[0], the second element is s[1] and so on. At the end of the string there is a character ‘\0’ (zero character). All strings declared in such way contain ‘\0’ at the end. So we can hold string of any length as memory allows. The programmer do not see the character ‘\0’, but it is ususally added at the end of string. For example, in declared array s can contain upto 9 letters, and the string “ABC” contains 4 letters: ‘A’, ‘B’, ‘C’, ‘\0’.

Example 1. Consider the example how to declare are print the strings.
#include <stdio.h>

// Declare two strings s and t. The string t is initialized with data.
char s[10],t[10] = "This";

int i;

void main(void)

{

//To pring strings with printf function, use format %s:
 printf("%s\n",t);

//It is possible to print the string letter by letter:
 for(i = 0; t[i]; i++) printf("%c",t[i]); printf("\n");

}

When you print the string letter be letter, the lopp continues until the current letter will not become ‘\0’. But such output is too slow.
There is a set of function defined in the library <string.h> that hangle strings. Consider some of them:
	function
	description

	size_t strlen(const char *string)
	length of the string

	char *strcpy(char *s1, const char *s2)
	copies the string s2, including the character ‘\0’, into the memory, beginning with the address s1. Returns s1.

	char *strcat(char *s1, const char *s2)
	Concatenation of s1 and s2. The string s2 is appended at the and of s1.

	char *strcpy (char *destination, const char *source);
	The string source copies into destination.

Example 2. Declare the string s and print its length.

#include <stdio.h>

#include <string.h>

char s[] = "This";

void main(void)

{

 printf("Length of %s is %d\n",s,strlen(s));

}

Example 3. Create the string t, consisting of 10 copies “abc”.

#include <stdio.h>

#include <string.h>

char s[] = "abc", t[31];

int i;

void main(void)

{

 for(i = 0; i < 10; i++) strcat(t,s);

 printf("%s\n",t);

}

Example 4. It is not allowed to assign the strings using the operator “=”. You need to copy the data from one string to another using the function strcpy.

#include <stdio.h>

#include <string.h>

char s[10] = "Hello", t[10];

void main(void)

{

 strcpy(t,s);

 printf("%s\n%s\n",s,t);

}

Example 5. When you read strings using the format %s, the sequence of letters is read which does not contain spaces. For example, is you enter as the intut the text ”This is a cat”, each time the fuction scanf should read only one word. The loop repeats 4 times (the input text contains 4 words). The words are displayed together because printing space between them is not provided in the program.
#include <stdio.h>

char s[100];

int i;

void main(void)

{

 for(i = 0; i < 4; i++)

 {

 scanf("%s",s); printf("%s",s);

 }

}

The next functions allow to read and write the lines of characters.

	function
	declaration

	char *gets(char *s)
	Read the line in char array s

	int puts(const char *s)
	print twe string s

The function gets reads all the line in array s regardless the characters it contains. If to enter the text ”This is a cat”, the function gets(s) will write it into the array s, adding the character ‘\0’ at the end of the line.
Example 6. Read the trext and print it. The length of each line is no more than 100 characters.

char s[100];

while(gets(s)) puts(s);

