
Lesson 6

1. Templates: Definition and usage.

2. Namespace. Visibility extension operator. using directive.

3. Standard template library (STL). Algorithms. Containers. Iterators.

4. Vectors. Constructors. Adding-deleting elements. Usage of iterators to access elements.

1. Templates

Templates let us define functions, which can work with different types of information. Templates are defined as following:

template <class identifier> definition of function;
template <typename identifier> definition of function;
Both definitions are identical. You can use both class and typename keywords.

For example, in С you can create overloaded function for calculating abs:

int abs(int n)
{
 return n < 0 ? -n : n;
}
double abs(double n)
{
 return n < 0 ? -n : n;
}
Using template, you can create unique definition which will be automatically work with any type of information:

#include <stdio.h>
template <class T> T abs(T n)
{

return n < 0 ? -n : n;
}
int main(void)
{
 double d = abs(-4.55);
 int i = abs(-7);
 printf("%lf %d\n",d,i);

 return 0;
}
Next template finds max of two:

template <class Type> Type max (Type a, Type b)
{
 return (a > b ? a : b);
}
The variable Type can be of any type. When calling function you can explicitly show the type with which it will work:

function name<type> (parameters)
max function can be called as following:

int i = max<int>(7,76);
Calling function with different parameter types is prohibited. You can define template of function which will take parameters of different types:

template <class Type1, class Type2> Type1 max (Type1 a, Type2 b)
{
 return (a > b ? a : b);
}
Then, max function can be called as one of the following:

int i = max(7,76);
int i = max<int,long>(7,76);
2. Namespace

namespace

Namespace lets us to combine global classes, objects, functions under one name. In other words, they let us divide global space to fields each of which has own active objects.

Namespaces are defined as following:

namespace <identifier>
{
 <namespace body>
}
Namespace body may contain many classes, objects, and functions. For example:

namespace ivan
{
 int a, b;
}
For accessing elements of namespace from outside you have to use operator of visibility :: . For example, to access variable a you have to write: ivan::a. The following program creates two namespaces each of which has own variable. Variables and functions from different namespaces may have same names.

#include <iostream.h>
namespace first
{
 int var = 5;
}
namespace second
{
 double var = 3.1416;
}
int main (void)
{
 cout << first::var << endl;
 cout << second::var << endl;

 return 0;
}
using namespace

Directive using lets us to associate the current global space of objects with namespace. After command

using namespace <identifier>
is done, you can access all objects and functions of namespace.

#include <iostream.h>
namespace first
{
 int var = 5;
}
namespace second
{
 double var = 3.1416;
}
int main (void)
{
 {
 usingnamespace first;
 cout << var << endl;
 }
 {
 usingnamespace second;
 cout << var << endl;
 }

 return 0;
}
In case of having two namespaces in one block there can occur some problems because of identical names.

3. Standard Template Library STL

STL (standard template library) is the collection of function and class templates in C++ which include different containers of information (list, queue, set, mapping, hash table, priority queue) and base algorithms(sorting, searching).

STL is a namespace called std. When using it, all files included in it are written without extension .h, but some of them are written with adding c to the beginning of name. For example, <stdio.h>, <limits.h> take place in STL as <cstdio>, <climits>.

To include STL you have to use directive:

using namespace std;
	#include <iostream>
void main (void)
{
 std::cout <<"Hello, world!\n";
}
	#include <iostream>
using namespace std;
void main (void)
{
 cout <<"Hello, world!\n";
}

	#include <cstdio>
void main (void)
{
 std::printf("Hello, world!\n");
}
	#include <cstdio>
using namespace std;
void main (void)
{
 printf("Hello, world!\n");
}

STL includes five main component types:

1. algorithm: defines calculating procedure.

2. container: manages list of objects in memory.

3. iterator: provides for algorithm the facilities for accessing the contents of the container.

4. function object: encapsulates function in object to be used by other components.

5. adaptor: adapts component for providing different interface.

Containers are frequently encountered methods of data organization: dynamic arrays, lists, queues, stacks.

Algorithms are not the part of containers, they create separate subsystem. However, almost each algorithm can be applied to the almost each container. Calling a method for some algorithm, we call this method by his own, not for the instance of some class, while the container, to which the algorithm is applied, is passed as a parameter.

Iterator is a pointer, which can move throughout elements of container. Iterators play the same role as index of array elements. By index of array you can get array element, by iterator you can get element of container.

It is not recommended to write when working on large project

using namespace std;
because name conflict may occur. For this reason non-trivial compilation/link errors may hurt your project. Some variable from namespace may overlap with yours variable. Therefore, if you want to use vector class, for example, you should write

using std::vector;
For example, the following code will fail to compile because variable y1 is defined in math.h library, which is called from cmath
#include <cstdio>
#include <cmath>
double x1, y1;
int main(void)
{
 return 0;
}
4. Vectors

Vector is a sequence of objects with direct access. It supports constant time for adding/deleting elements from the end of sequence and linear time for adding/deleting elements from middle or beginning. Size of vector varies dynamically, memory management is automatic. For using vector you need to include the following library:

#include <vector>
For creating instance of vector one of the following constructors can be used:

	Constructor
	Constructor description

	vector()
	Creates empty vector

	vector(size_type n)
	Creates vector of n elements

	vector(size_type n, const T& t)
	Creates vector of n copies of t

	vector(const vector&)
	Copying constructor

Example 4.1. Let’s see the work of constructors on some examples.

Create an empty vector v (array of length 0, with no element):
vector<int> v;
Create a vector of length 10:

vector<int> v(10);
Create a vector of length 10 with all elements equal to 5:

vector<int> v(10,5);
Let m is an array of numbers. To create a vector containing the same numbers as in m you need a copy constructor:

int m[] = {1,2,3,4,5};
vector<int> v(m,m+5);
To create one more vector containing 3, 4, and 5 element as in m you need an interval copying constructor:

vector<int> u(&v[2],&v[5]);
or
vector<int> u(v+2,v+5);
Following methods are created to work with vectors:

	method
	method description

	void clear()
	deleting all elements
vector becomes empty

	size_type size() const
	calculates the size of vector

	bool empty() const
	returns true if vector is empty

	reference operator[](size_type n)
	indexation operator, returns n-th element of vector

	reference front()
	returns first element of vector

	reference back()
	returns last element of vector

Example 4.2. Let m is an array of numbers. Let us create vector v by copying all data from m in v:

int m[] = {1,2,3,4,5};
vector<int> v(m,m+5);
Let’s find size of vector v:

printf("Size: %d\n",v.size());
Let’s find first and last elements:

printf("First: %d, Last: %d\n",v.front(),v.back());
Let’s print all elements using indexation:

for(int i= 0; i < v.size(); i++)
 printf("%d ",v[i]);
printf("\n");
Example 4.3. Let’s create a program which creates vector and prints its elements

#include <cstdio>
#include <vector>
using namespace std;
int v[] = {1, 2, 3, 4, 5}, i;
vector<int> u(v+1,v+5);
int main(void)
{
 for(i = 0; i < u.size(); i++)
 printf("%d ",u[i]);
 return 0;
}
	method
	method description

	void push_back(const T& x)
	add element to the end of vector

	void pop_back()
	delete last element

The following table shows methods of insertion and deletion of elements from vector:

Iterator is a pointer to the object. It is created as following:

template_name<type>::iterator iterator_name
Vector class has the following iterators:

	iterator
	iterator description

	const_iterator begin() const
	pointer to the beginning of vector

	const_iterator end() const
	pointer to the end of vector

Example 4.4. Let’s push numbers 4, 10, 1 into the vector. Then, print elements using iter.
vector<int> v;
vector<int>::iterator iter;
v.push_back(4); v.push_back(10); v.push_back(1);
for(iter=v.begin();iter!=v.end();iter++) printf("%d ",*iter); printf("\n");
The methods for adding and deleting elements take iterators as arguments:

	method
	method description

	iterator insert(iterator pos,
 const T& x)
	insert element x in position pos

	iterator erase(iterator pos)
	delete element shown by iterator pos

	iterator erase(iterator first,
 iterator last)
	delete all elements in interval [first..last]

Example 4.5. Let’s create a vector v of squares of natural numbers from 1 to 10. Let’s delete values 16, 25, 36, 49 from vector.

vector<int> v;
for(i = 1; i <= 10; i++)
 v.push_back(i*i);
for(i = 0; i < v.size(); i++)
 printf("%d ",v[i]);
printf("\n");
v.erase(v.begin()+3,v.end()-3);
for(i = 0; i < v.size(); i++)
 printf("%d ",v[i]);
printf("\n");
Example 4.6.Let’s create a vector v with five nines.

vector<int> v;
v.assign(5,9);
Work with memory. In vector container description some functions as size and resize, capacity and reserve can be encountered. Memory is allocated for the vector "in reserve", and must be able to control the number of vector elements, and the amount of memory it takes. size and resize are needed to work with real number of vector elements, capacity and reserve - to work with memory.

· size - returns number of vector elements

· resize - changes number of vector elements

· capacity - returns for how many elements the memory is reserved

· reserve - reserves memory

Example 4.7. Let’s see how memory is allocated for a vector.

#include <cstdio>
#include <vector>
using namespace std;
vector<int> v;
int main(void)
{
 v.push_back(5); v.push_back(7); v.push_back(10);
 printf("Vector size = %d, capacity = %d\n",v.size(),v.capacity());
 v.reserve(100);
 printf("Vector size = %d, capacity = %d\n",v.size(),v.capacity());
 v.resize(50);
 printf("Vector size = %d, capacity = %d\n",v.size(),v.capacity());
 v.erase(v.begin()+3,v.end());
 printf("Vector size = %d, capacity = %d\n",v.size(),v.capacity());
 vector<int>(v).swap(v);
 printf("Vector size = %d, capacity = %d\n",v.size(),v.capacity());
 return 0;
}

