Chapter 4
Arrays
An array is an aggregate data type that lets us access many variables of the same type through a single identifier.

Consider the case where you want to record the test scores for 30 students in a class. Without arrays, you would have to allocate 30 almost-identical variables!
int testScoreStudent1;

int testScoreStudent2;

int testScoreStudent3;

// ...

int testScoreStudent30;
Arrays give us a much easier way to do this. The following array definition is essentially equivalent:

int testScore[30]; // allocate 30 integer variables in a fixed array
In a variable declaration, we use square brackets ([]) to tell the compiler both that this is an array variable (instead of a normal variable), as well as how many variables to allocate (called the array length).

In the above example, we declare a fixed array named testScore, with a length of 30. A fixed array (also called a fixed length array or fixed size array) is an array where the length is known at compile time. When testScore is instantiated, the compiler will allocate 30 integers.
Array elements and subscripting

Each of the variables in an array is called an element. Elements do not have their own unique names. Instead, to access individual elements of an array, we use the array name, along with the subscript operator ([]), and a parameter called a subscript (or index) that tells the compiler which element we want. This process is called subscripting or indexing the array.

In the example above, the first element in our array is testScore[0]. The second is testScore[1]. The tenth is testScore[9]. The last element in our testScore array is testScore[29]. This is great because we no longer need to keep track of a bunch of different (but related) names – we can just vary the subscript to access different elements.

Important: Unlike everyday life, where we typically count starting from 1, in C++, arrays always count starting from 0!

For an array of length n, the array elements are numbered 0 through n – 1. This is called the array’s range.
Here’s a sample program that puts together the definition and indexing of an array:
#include <stdio.h>

int main(void)

{

 int prime[5]; // hold the first 5 prime numbers

 prime[0] = 2;

 prime[1] = 3;

 prime[2] = 5;

 prime[3] = 7;

 prime[4] = 11;

 printf("The lowest prime number is: %d\n",prime[0]);

 printf("The fifth prime number is: %d\n",prime[4]);

 return 0;

}

Array data types

Arrays can be made from any data type. Consider the following example, where we declare an array of doubles:
#include <stdio.h>

int main(void)

{

 double sides[3]; // hold the sides of triangle

 sides[0] = 6.5;

 sides[1] = 7.34;

 sides[2] = 5;

 printf("The perimeter of triangle is: %lf\n",
 sides[0] + sides[1] + sides[2]);

 return 0;

}

Arrays can also be made from structs. To access a struct member of an array element, first pick which array element you want, and then use the member selection operator to select the struct member you want:
#include <stdio.h>

struct Rectangle

{

 int length;

 int width;

};

Rectangle rects[5]; // declare an array of 5 Rectangle

int main(void)

{

 rects[0].length = 4;

 rects[0].width = 5;

 printf("The area of the first rectangle is: %d\n",
 rects[0].length * rects[0].width);

 return 0;

}

Arrays can even be made from arrays, a topic that we’ll cover in a future.
Fixed array declarations

When declaring a fixed array, the size of the array (between the square brackets) must be a compile-time constant. This is because the size of a fixed array must be known at compile time. Here are some different ways to declare fixed arrays:
// using a literal constant

int array[5]; // Ok

// using a macro symbolic constant

#define ARRAY_SIZE 5

int array[ARRAY_SIZE]; // Syntactically okay, but don't do this

// using a symbolic constant

const int arraySize = 5;

int array[arraySize]; // Ok

// using an enumerator

enum ArrayElements

{

 MAX_ARRAY_SIZE = 5

};

int array[MAX_ARRAY_SIZE]; // Ok
A note on dynamic arrays

Because fixed arrays have memory allocated at compile time, that introduces two limitations:

· Fixed arrays cannot have a length based on either user input or some other value calculated at runtime.

· Fixed arrays have a fixed length that can not be changed.

In many cases, these limitations are problematic. Fortunately, C++ supports a second kind of array known as a dynamic array. The length of a dynamic array can be set at runtime, and their length can be changed. However, dynamic arrays are a little more complicated to instantiate, so we’ll cover them later.
Initializing fixed arrays

Array elements are treated just like normal variables, and as such, they are not initialized when created.

One way to initialize an array is to do it element by element:

int prime[5]; // hold the first 5 prime numbers

prime[0] = 2;

prime[1] = 3;

prime[2] = 5;

prime[3] = 7;

prime[4] = 11;
However, this is a pain, especially as the array gets larger.

Fortunately, C++ provides a more convenient way to initialize entire arrays via use of an initializer list. The following example is equivalent to the one above:

int prime[5] = { 2, 3, 5, 7, 11 };
// use initializer list to initialize the fixed array
If there are more initializers in the list than the array can hold, the compiler will generate an error.

However, if there are less initializers in the list than the array can hold, the remaining elements are initialized to 0. The following example shows this in action:

#include <stdio.h>

int main(void)

{

 double sides[5] = {6.5, 7.34, 5};

 printf("The perimeter of triangle is: %lf\n",

 sides[0] + sides[1] + sides[2]);

 printf("sides[3] = %lf\n",sides[3]);

 printf("sides[4] = %lf\n",sides[4]);

 return 0;

}

Consequently, to initialize all the elements of an array to 0, you can do this:

// Initialize all elements to 0

int a[5] = { };

Omitted size

If you are initializing a fixed array of elements using an initializer list, the compiler can figure out the size of the array for you, and you can omit explicitly declaring the size of the array.

The following two lines are equivalent:

int array[5] = { 0, 1, 2, 3, 4 }; // explicitly define size of the array

int array[] = { 0, 1, 2, 3, 4 }; // let initializer list set size of the array

