CLASSES
The main purpose of C++ programming is to add object orientation to the C programming language and classes are the central feature of C++ that supports object-oriented programming and are often called user-defined types.

A class is used to specify the form of an object and it combines data representation and methods for manipulating that data into one neat package. The data and functions within a class are called members of the class.

C++ Class Definitions

When you define a class, you define a blueprint for a data type. This doesn't actually define any data, but it does define what the class name means, that is, what an object of the class will consist of and what operations can be performed on such an object.

A class definition starts with the keyword class followed by the class name; and the class body, enclosed by a pair of curly braces. A class definition must be followed either by a semicolon or a list of declarations. For example, we defined the Box data type using the keyword class as follows:

class Box

{

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

We can define a point like this:

class Point

{

public:

 int x, y;
};

We can define a triangle like this:

class Triangle

{

public:

 int x, y, z;

};

The keyword public determines the access attributes of the members of the class that follow it. A public member can be accessed from outside the class anywhere within the scope of the class object. You can also specify the members of a class as private or protected which we will discuss in a sub-section.

Define C++ Objects

A class provides the blueprints for objects, so basically an object is created from a class. We declare objects of a class with exactly the same sort of declaration that we declare variables of basic types. Following statements declare two objects of class Box:

Box Box1; // Declare Box1 of type Box

Box Box2; // Declare Box2 of type Box

Point a, b, c; // Declare three objects a, b, c of type Point
The objects Box1, Box2 and a, b, c will have their own copy of data members.

Accessing the Data Members:

The public data members of objects of a class can be accessed using the direct member access operator (.). Let us try the following example to make the things clear:
#include <stdio.h>

class Point

{

public:

 int x, y;

};

int main(void)

{

 Point a;

 a.x = 5; a.y = 8;

 printf("%d %d\n",a.x,a.y);

 return 0;

}

It is important to note that private and protected members can not be accessed directly using direct member access operator (.). We will learn how private and protected members can be accessed.

Constructors
A constructor is a member function of a class which initializes objects of a class. Constructor is automatically called when object (instance of class) create. It is special member function of the class.
A constructor is different from normal functions in following ways:

· Constructor has same name as the class itself

· Constructors don’t have return type

· A constructor is automatically called when an object is created.

· If we do not specify a constructor, C++ compiler generates a default constructor for us (expects no parameters and has an empty body).

1. Default Constructors: Default constructor is the constructor which doesn’t take any argument. It has no parameters.

#include <stdio.h>

class Point

{

public:

 int x, y;

 Point()

 {

 x = 0; // you can assign any value here

 y = 0; // you can assign any value here

 }

};

int main(void)

{

 Point a;

 printf("%d %d\n",a.x,a.y);

 return 0;

}

2. Parameterized Constructors: It is possible to pass arguments to constructors. Typically, these arguments help initialize an object when it is created. To create a parameterized constructor, simply add parameters to it the way you would to any other function. When you define the constructor’s body, use the parameters to initialize the object.

#include <stdio.h>

class Point

{

public:

 int x, y;

 Point(int a, int b)

 {

 x = a;

 y = b;

 }

};

int main(void)

{

 Point a(5,8);

 Point b(2,3);

 printf("%d %d\n",a.x,a.y);

 printf("%d %d\n",b.x,b.y);

 return 0;

}

Class Triangle with a constructor:

#include <stdio.h>

class Triangle

{

public:

 int x, y, z;

 Triangle(int a, int b, int c)

 {

 x = a;

 y = b;

 z = c;

 }

};

int main(void)

{

 Triangle a(1,2,3);

 printf("%d %d %d\n",a.x,a.y,a.z);

 return 0;

}

Initializer Lists

C++ provides a method for initializing class member variables (rather than assigning values to them after they are created) via a member initializer list (often called a “member initialization list”).

#include <stdio.h>

class Triangle

{

public:

 int x, y, z;

 Triangle(int x, int y, int z) : x(x), y(y), z(z) {}

};

int main(void)

{

 Triangle a(1,2,3);

 printf("%d %d %d\n",a.x,a.y,a.z);

 return 0;

}

Class member functions

A member function of a class is a function that has its definition or its prototype within the class definition like any other variable. It operates on any object of the class of which it is a member, and has access to all the members of a class for that object.

Class Triangle with functions Print and Perimeter. Class can contain multiple constructors.
#include <stdio.h>

class Triangle

{

public:

 int x, y, z;

 Triangle() : x(0), y(0), z(0) {}

 Triangle(int val) : x(val), y(val), z(val) {}

 Triangle(int x, int y, int z) : x(x), y(y), z(z) {}

 void Print(void)

 {

 printf("%d %d %d\n",x,y,z);

 }

 int Perimeter(void)

 {

 return x + y + z;

 }

};

int main(void)

{

 Triangle a(1,2,3); a.Print(); printf("%d\n",a.Perimeter());

 Triangle b(5); b.Print(); printf("%d\n",b.Perimeter());

 Triangle c; c.Print(); printf("%d\n",c.Perimeter());

 return 0;

}

Let us take previously defined class to access the members of the class using a member function instead of directly accessing them:
#include <stdio.h>

class Point

{

private:

 int x, y;

public:

 void SetX(int value)

 {

 x = value;

 }

 void SetY(int value)

 {

 y = value;

 }

 int GetX(void)

 {

 return x;

 }

 int GetY(void)

 {

 return y;

 }

};

int main(void)

{

 Point a;

 a.SetX(5); a.SetY(8);

 printf("%d %d\n",a.GetX(),a.GetY());

 return 0;

}

Member functions can be defined within the class definition or separately using scope resolution operator, ::. Defining a member function within the class definition declares the function inline, even if you do not use the inline specifier.
If you like you can define same function outside the class using scope resolution operator, :: as follows:
#include <stdio.h>

class Point

{

private:

 int x, y;

public:

 void SetX(int value);

 void SetY(int value);

 int GetX(void);

 int GetY(void);

};

void Point::SetX(int value)

{

 x = value;

}

void Point::SetY(int value)

{

 y = value;

}

int Point::GetX(void)

{

 return x;

}

int Point::GetY(void)

{

 return y;

}

int main(void)

{

 Point a;

 a.SetX(5); a.SetY(8);

 printf("%d %d\n",a.GetX(),a.GetY());

 return 0;

}

this pointer

Every object in C++ has access to its own address through an important pointer called this pointer. The this pointer is an implicit parameter to all member functions. Therefore, inside a member function, this may be used to refer to the invoking object.

Only member functions have a this pointer.

#include <stdio.h>

class Point

{

public:

 int x, y;

 void Set(int x, int y)

 {

 this->x = x;

 this->y = y;

 }

};

int main(void)

{

 Point a;

 a.Set(5,8);

 printf("%d %d\n",a.x,a.y);

 return 0;

}

this pointer contains an address of an object.

#include <stdio.h>

class Point

{

public:

 int x, y;

 void PrintThis(void)

 {

 printf("%p\n",this);

 }

};

int main(void)

{

 Point a, b, c;

 printf("%p ",&a); a.PrintThis();

 printf("%p ",&b); b.PrintThis();

 printf("%p ",&c); c.PrintThis();

 return 0;

}

Pointer to classes
A pointer to a C++ class is done exactly the same way as a pointer to a structure and to access members of a pointer to a class you use the member access operator -> operator, just as you do with pointers to structures. Also as with all pointers, you must initialize the pointer before using it.
#include <stdio.h>

class Square

{

public:

 double length; // Length of a square

 double width; // Width of a square

 Square(double l, double w) // constructor

 {

 length = l;

 width = w;

 }

 double Area()

 {

 return length * width;

 }

};

int main(void)

{

 Square a(2.0,3.0), b(6.5,7.2), *c;

 c = &a;

 printf("%lf\n",c->Area());
 // printf("%lf\n",(*c).Area());
 c = &b;

 printf("%lf\n",c->Area());

 return 0;

}

Create pointers to objects:

#include <stdio.h>

class Square

{

public:

 double length; // Length of a square

 double width; // Width of a square

 Square(double l, double w) // constructor

 {

 length = l;

 width = w;

 }

 double Area()

 {

 return length * width;

 }

};

int main(void)

{

 Square *a = new Square(2.0,3.0);

 Square *b = new Square(6.0,8.0);

 printf("%lf\n",a->Area());

 printf("%lf\n",b->Area());

 delete a;

 delete b;

 return 0;

}

Copy constructor

The copy constructor is a constructor which creates an object by initializing it with an object of the same class, which has been created previously. The copy constructor is used to:

· Initialize one object from another of the same type.

· Copy an object to pass it as an argument to a function.

· Copy an object to return it from a function.

If a copy constructor is not defined in a class, the compiler itself defines one. If the class has pointer variables and has some dynamic memory allocations, then it is a must to have a copy constructor. The most common form of copy constructor is shown here:

classname (const classname &obj)

{

 // body of constructor

}

Here obj is a reference to an object that is being used to initialize another object.

Copy constructor is not defined in a class, the compiler itself defines one:

#include <stdio.h>

class Point

{

public:

 int x, y;

 Point(int x = 0, int y = 0) : x(x), y(y) {}

 void Print(void)

 {

 printf("%d %d\n",x,y);

 }

};

int main(void)

{

 Point a(4,5), b(a);

 a.Print();

 b.Print();

 return 0;

}

Define a copy constructor in a class:

#include <stdio.h>

class Point

{

public:

 int x, y;

 Point(int x = 0, int y = 0) : x(x), y(y) {}

 Point(const Point &a)

 {

 x = a.x;

 y = a.y;

 }

 void Print(void)

 {

 printf("%d %d\n",x,y);

 }

};

int main(void)

{

 Point a(4,5), b(a);

 a.Print();

 b.Print();

 return 0;

}

Create another object using existing object of the same type:
#include <stdio.h>

class Point

{

public:

 int *x, *y;

 Point(int x = 0, int y = 0)

 {

 this->x = new int;

 this->y = new int;

 *(this->x) = x;

 *(this->y) = y;

 }

 Point(const Point &a)

 {

 this->x = new int;

 this->y = new int;

 *(this->x) = *(a.y);

 *(this->y) = *(a.x);

 //this->x = a.y; incorrect!!!

 //this->y = a.x;

 }

 void Print(void)

 {

 printf("%d %d\n",*x,*y);

 }

};

int main(void)

{

 Point a(4,5), b(a);

 a.Print();

 b.Print();

 return 0;

}

Static functions
Static is a keyword in C++ used to give special characteristics to an element. Static elements are allocated storage only once in a program lifetime in static storage area. And they have a scope till the program lifetime. Static Keyword can be used with following:
· Static variable in functions

· Static Class Objects

· Static member Variable in class

· Static Methods in class

Static variables when used inside function are initialized only once, and then they hold there value even through function calls. These static variables are stored on static storage area, not in stack.

#include <stdio.h>

void f(void)

{

 static int count = 1;

 printf("%d\n",count);

 count++;

}

int main(void)

{

 for(int i = 0; i < 5; i++)

 {

 f();

 }

 return 0;

}

Let's se the same program's output without using static variable.

#include <stdio.h>

void f(void)

{

 int count = 1;

 printf("%d\n",count);

 count++;

}

int main(void)

{

 for(int i = 0; i < 5; i++)

 {

 f();

 }

 return 0;

}

If we do not use static keyword, the variable count, is reinitialized every time when f() function is called, and gets destroyed each time when f() functions ends. But, if we make it static, once initialized count will have a scope till the end of main() function and it will carry its value through function calls too. If you don't initialize a static variable, they are by default initialized to zero.

Static members of a class
We can define class members static using static keyword. When we declare a member of a class as static it means no matter how many objects of the class are created, there is only one copy of the static member.

A static member is shared by all objects of the class. All static data is initialized to zero when the first object is created, if no other initialization is present. We can't put it in the class definition but it can be initialized outside the class as done in the following example by redeclaring the static variable, using the scope resolution operator :: to identify which class it belongs to.
Every time the object Point is created, we increase the value of count. We initialize the static member outside the class to 0. The program prints the total number of objects.
#include <stdio.h>

class Point

{

public:

 int x, y;

 static int count;

 Point(int x = 0, int y = 0) : x(x), y(y)

 {

 count++;

 }

};

int Point::count = 0;

Point a, b(5,6), c(7,8);

Point m[10];

int main(void)

{

 printf("%d\n",Point::count);

 return 0;

}

Static Function Members

By declaring a function member as static, you make it independent of any particular object of the class. A static member function can be called even if no objects of the class exist and the static functions are accessed using only the class name and the scope resolution operator ::.

A static member function can only access static data member, other static member functions and any other functions from outside the class.

Static member functions have a class scope and they do not have access to the this pointer of the class. You could use a static member function to determine whether some objects of the class have been created or not.

Print the total number of objects after creating objects.

#include <stdio.h>

class Point

{

public:

 int x, y;

 static int count;

 Point(int x = 0, int y = 0) : x(x), y(y)

 {

 count++;

 }

 static int getCount()

 {

 return count;

 }

};

int Point::count = 0;

int main(void)

{

 printf("%d\n",Point::getCount());

 Point a, b(5,6), c(7,8);

 printf("%d\n",Point::getCount());

 Point m[10];

 printf("%d\n",Point::count);

 return 0;

}

Operators overloading

You can redefine or overload most of the built-in operators available in C++. Thus a programmer can use operators with user-defined types as well.

Overloaded operators are functions with special names. Like any other function, an overloaded operator has a return type and a parameter list.

class class_name
{

 . . .

public:

 return_type operator sign (arg1, arg 2, . . .)

 {

 . . .
 }
. . .

};
The return type comes first which is followed by keyword operator, followed by operator sign, i.e., the operator you want to overload like: +, <, ++ etc. and finally the arguments are passed. Then, inside the body you perform the task you want when this operator function is called.
#include <stdio.h>

class Point

{

public:

 int x, y;

 Point (int x = 0, int y = 0) : x(x), y(y) {}

 Point operator +(Point &p)

 {

 return Point(this->x + p.x, this->y + p.y);

 }

 Point operator -(Point &p)

 {

 return Point(this->x - p.x, this->y - p.y);

 }

 void Print(void)

 {

 printf("%d %d\n",x,y);

 }

};

int main(void)

{

 Point a(2,3), b(6,8),c;

 c = a + b - Point(2,2);

 c.Print();

 return 0;

}

Warning:

1. Operator overloading cannot be used to change the way operator works on built-in types. Operator overloading only allows to redefine the meaning of operator for user-defined types.

2. There are two operators assignment operator(=) and address operator(&) which does not need to be overloaded. Because these two operators are already overloaded in C++ library. For example: If obj1 and obj2 are two objects of same class then, you can use code obj1 = obj2; without overloading = operator. This code will copy the contents object of obj2 to obj1. Similarly, you can use address operator directly without overloading which will return the address of object in memory.

3. Operator overloading cannot change the precedence of operators and associativity of operators. But, if you want to change the order of evaluation, parenthesis should be used.

4. Not all operators in C++ language can be overloaded. The operators that cannot be overloaded in C++ are ::(scope resolution), .(member selection), .*(member selection through pointer to function) and ?:(ternary operator).

Unary operators

The unary operators operate on the object for which they were called and normally, this operator appears on the left side of the object, as in !obj, -obj, and ++obj but sometime they can be used as postfix as well like obj++ or obj--.

The increment (++) and decrement (--) operators are two important unary operators available in C++. Following example explain how increment (++) operator can be overloaded for prefix as well as postfix usage. Similar way, you can overload operator (--). The operators not only increase (decrease) the value of object by 1, but also return the resulting values.
#include <stdio.h>

class Point

{

public:

 int x, y;

 Point (int x = 0, int y = 0) : x(x), y(y) {}

 Point operator ++(void)

 {

 this->x++; this->y++;

 return Point(this->x,this->y);

 }

 Point operator --(void)

 {

 this->x--; this->y--;

 return Point(this->x,this->y);

 }

 void Print(void)

 {

 printf("%d %d\n",x,y);

 }

};

int main(void)

{

 Point a(2,3), b(6,8), c;

 ++a;

 b--; // compiler uses prefix form here instead of postfix

 c = ++a;

 a.Print(); b.Print(); c.Print();

 return 0;

}

Following example explain how minus (-) operator can be overloaded.

#include <stdio.h>

class Point

{

public:

 int x, y;

 Point (int x = 0, int y = 0) : x(x), y(y) {}

 Point operator -(void)

 {

 return Point(-this->x,-this->y);

 }

 void Print(void)

 {

 printf("%d %d\n",x,y);

 }

};

int main(void)

{

 Point a(2,3), b;

 b = -a;

 a.Print(); b.Print();

 return 0;

}

Binary operators

You use binary operators very frequently like addition (+) operator, subtraction (-) operator and division (/) operator.

#include <stdio.h>

class Point

{

public:

 int x, y;

 Point(int x = 0, int y = 0) : x(x), y(y) {}

 Point operator +(int value)

 {

 return Point(this->x + value,this->y + value);

 }

 Point operator +(Point &p)

 {

 return Point(this->x + p.x,this->y + p.y);

 }

 Point operator -(int value)

 {

 return Point(this->x - value,this->y - value);

 }

 Point operator -(Point &p)

 {

 return Point(this->x - p.x,this->y - p.y);

 }

 void Print(void)

 {

 printf("%d %d\n",x,y);

 }

};

int main(void)

{

 Point a(4,5), b(1,2), c, d;

 c = a + b + 3;

 d = a - b - 1;

 a.Print(); b.Print();

 c.Print(); d.Print();

 return 0;

}

[] operator

The subscript operator [] is normally used to access array elements. This operator can be overloaded to enhance the existing functionality of C++ arrays.
#include <stdio.h>

class Array

{

public:

 int *m;

 int size;

 Array(int n = 1) : size(n)

 {

 m = new int[n];

 }

 ~Array(void)

 {

 delete[] m;

 }

 int &operator[](int i)

 {

 if(i >= size)

 {

 puts("Index out of bounds");

 return m[0]; // return first element.

 }

 return m[i];

 }

};

int main(void)

{

 int i;

 Array a(10);

 for(i = 0; i < 10; i++)

 a[i] = i*i;

 for(i = 0; i < 10; i++)

 printf("%d ",a[i]);

 printf("\n");

 return 0;

}

Assignment operator

You can overload the assignment operator (=) just as you can other operators and it can be used to create an object just like the copy constructor.

#include <stdio.h>

class Array

{

public:

 int *m;

 int size;

 Array(int n = 1) : size(n)

 {

 m = new int[n];

 }

 ~Array(void)

 {

 delete[] m;

 }

 int &operator[](int i)

 {

 if(i >= size)

 {

 puts("Index out of bounds");

 return m[0]; // return first element.

 }

 return m[i];

 }

 void operator=(const Array &a)

 {

 delete[] m;

 m = new int[a.size];

 size = a.size;

 for(int i = 0; i < size; i++)

 m[i] = a.m[i];

 }

};

int main(void)

{

 int i;

 Array a(10), b;

 for(i = 0; i < 10; i++)

 a[i] = i*i;

 b = a;

 for(i = 0; i < 10; i++)

 printf("%d ",b[i]);

 printf("\n");

 return 0;

}

Another example:

#include <stdio.h>

class Point

{

public:

 int *x, *y;

 Point(int x = 0, int y = 0)

 {

 this->x = new int(x);

 this->y = new int(y);

 //*(this->x) = x;

 //*(this->y) = y;

 }

 void Print(void)

 {

 printf("%d %d\n",*x,*y);

 }

 void operator=(const Point &a)

 {

 *x = *(a.x);

 *y = *(a.y);

 }

 Point operator+(const Point &a)

 {

 return Point(*x + *(a.x), *y + *(a.y));

 }

 Point operator+(int value)

 {

 return Point(*x + value, *y + value);

 }

};

int main(void)

{

 Point a(4,5), b(15,16), c;

 a.Print();

 b.Print();

 c = a;

 c.Print();

 c = a + b + 100;

 c.Print();

 return 0;

}

Inheritance
One of the most important concepts in object-oriented programming is that of inheritance. Inheritance allows us to define a class in terms of another class, which makes it easier to create and maintain an application. This also provides an opportunity to reuse the code functionality and fast implementation time.

When creating a class, instead of writing completely new data members and member functions, the programmer can designate that the new class should inherit the members of an existing class. This existing class is called the base class, and the new class is referred to as the derived class.
When one class inherits from another, the derived class inherits the variables and functions of the base class. These variables and functions become part of the derived class.

The idea of inheritance implements the IS A relationship. For example, mammal IS-A animal, dog IS-A mammal hence dog IS-A animal as well and so on.
Base & Derived Classes

A class can be derived from more than one classes, which means it can inherit data and functions from multiple base classes. To define a derived class, we use a class derivation list to specify the base class(es). A class derivation list names one or more base classes and has the form:

class derived-class: access-specifier base-class
Where access-specifier is one of public, protected, or private, and base-class is the name of a previously defined class. If the access-specifier is not used, then it is private by default.

Consider a base class Shape and its derived class Rectangle as follows:

#include <stdio.h>

// Base class

class Shape

{

protected:

 int width;

 int height;

public:

 void setWidth(int w)

 {

 width = w;

 }

 void setHeight(int h)

 {

 height = h;

 }

};

// Derived class

class Rectangle: public Shape

{

public:

 int getArea()

 {

 return (width * height);

 }

};

int main(void)

{

 Rectangle Rect;

 Rect.setWidth(5);

 Rect.setHeight(7);

 // Print the area of the object.

 printf("Total area = %d\n",Rect.getArea());

 return 0;

}
Access Control and Inheritance

A derived class can access all the non-private members of its base class. Thus base-class members that should not be accessible to the member functions of derived classes should be declared private in the base class.

We can summarize the different access types according to who can access them in the following way:
	Access
	public
	protected
	private

	Same class
	yes
	yes
	yes

	Derived class
	yes
	yes
	no

	Outside classes
	yes
	no
	no

A derived class inherits all base class methods with the following exceptions:

· Constructors, destructors and copy constructors of the base class.

· Overloaded operators of the base class.

· The friend functions of the base class.

Type of Inheritance

When deriving a class from a base class, the base class may be inherited through public, protected or private inheritance. The type of inheritance is specified by the access-specifier as explained above.

We hardly use protected or private inheritance, but public inheritance is commonly used. While using different type of inheritance, following rules are applied:

· Public Inheritance: When deriving a class from a public base class, public members of the base class become public members of the derived class and protected members of the base class become protected members of the derived class. A base class's private members are never accessible directly from a derived class, but can be accessed through calls to the public and protected members of the base class.

· Protected Inheritance: When deriving from a protected base class, public and protected members of the base class become protected members of the derived class.

· Private Inheritance: When deriving from a private base class, public and protected members of the base class become private members of the derived class.

