VARIABLES, POINTERS AND REFERENCES
Variables
A computer’s memory is a contiguous sequence of slots, or memory cells. All types of data – whole numbers, floating point numbers, strings of characters, boolean values – can be stored in memory cells.

A variable is a named memory cell. We call it a variable because the value in the cell can change. Memory cells can be of different sizes: 8 bits, 16 bits, 32 bits, 64 bits. Different sized cells are used to store different types of data.

Basic types

The C programming language provides the programmer with a set of data types for storing information and building up data types that are not part of the language itself. The former data types are called built-in types, and the latter are called user-defined types.

The three basic built-in types are: Characters, Integer numbers and Floating-point numbers.
The integer data types come in two flavors – signed and unsigned – which permit the programmer to specify values greater than and less than zero. In other words, positive and negative numbers. All of these basic built-in types have a specific size (amount of memory required) and range of values that they can represent. The bigger the numbers, the more memory is required.
	Type
	Description

	int
	integer, 4 bytes

	long long
	integer, 8 bytes

	float
	real, 4 bytes

	double
	real, 8 bytes

	char
	character, 1 byte

Variable declaration

All the variables that a program is going to use must be declared prior to use. Declaration of a variable serves two purposes:

· It associates a type and an identifier (or name) with the variable. The type allows the compiler to interpret statements correctly. For example in the CPU the instruction to add two integer values together is different from the instruction to add two floating-point values together. Hence the compiler must know the type of the variables so it can generate the correct add instruction.

· It allows the compiler to decide how much storage space to allocate for storage of the value associated with the identifier and to assign an address for each variable which can be used in code generation.

A variable declaration has the form:

type identifier-list;
type specifies the type of the variables being declared. The identifier-list is a list of the identifiers of the variables being declared, separated by commas.

int i, j, k;

double x, y;

[image: image1.emf]memory

i

j k

x y

sizeof operator

The sizeof is a keyword, but it is a compile-time operator that determines the size, in bytes, of a variable or data type. The sizeof operator can be used to get the size of classes, structures, unions and any other user defined data type.

The syntax of using sizeof is as follows:

sizeof(data type)
or

sizeof(variable)
The next program prints the sizes of built-in data types:

#include <stdio.h>

int main(void)

{

 printf("%d\n",sizeof(int));

 printf("%d\n",sizeof(long long));

 printf("%d\n",sizeof(float));

 printf("%d\n",sizeof(double));

 printf("%d\n",sizeof(char));

 return 0;

}

The next program prints the sizes of variables:

#include <stdio.h>

int i, j, k;

double x, y;

char c, d;

int main(void)

{

 printf("%d %d %d\n",sizeof(i),sizeof(j),sizeof(k));

 printf("%d %d\n",sizeof(x),sizeof(y));

 printf("%d %d\n",sizeof(c),sizeof(d));

 return 0;

}

The next program prints the size of array:

#include <stdio.h>

int m[100];

double q[100];

int main(void)

{

 printf("%d %d\n",sizeof(m),100*sizeof(int));

 printf("%d %d\n",sizeof(q),100*sizeof(double));

 return 0;

}

Pointers

Every variable is a memory location and every memory location has its address defined which can be accessed using ampersand (&) operator which denotes an address in memory. Consider the following code that prints the address of the integer variables:
#include <stdio.h>

int i, j, k, l;

int main(void)

{

 printf("%p %p %p %p\n",&i,&j,&k,&l);

 return 0;

}

[image: image2.emf]memory

k

0041:717C

j

0041:7180

i

0041:7184

l

0041:7188

The following code prints the address of the char variables:

#include <stdio.h>

char i, j, k, l;

int main(void)

{

 printf("%p %p %p %p\n",&i,&j,&k,&l);

 return 0;

}

A pointer is a variable whose value is memory address (or the address of another variable). Pointers give you the ability to work directly and efficiently with computer memory. Like any variable or constant, you must declare a pointer before you can work with it. The general form of a pointer variable declaration is:

type *var-name;
Here, type is the pointer's base type; it must be a valid C++ type and var-name is the name of the pointer variable. The asterisk you used to declare a pointer is the same asterisk that you use for multiplication. However, in this statement the asterisk is being used to designate a variable as a pointer. Following are the valid pointer declaration:

int *i, *j;

double *x, *y;

The actual data type of the value of all pointers, whether integer, float, character, or otherwise, is the same, a long hexadecimal number that represents a memory address. The size of any memory address is usually 4 bytes because it has the form XXXX:XXXX. The only difference between pointers of different data types is the data type of the variable or constant that the pointer points to.

The size of any pointer is usually 4 bytes:

#include <stdio.h>

int *i, *j;

double *x, *y;

int main(void)

{

 printf("%d %d\n",sizeof(i),sizeof(j));

 printf("%d %d\n",sizeof(x),sizeof(y));

 return 0;

}

[image: image3.emf]k = 33

0041:717C

j =22

0041:7180

i = 11

0041:7184

l = 44

0041:7188

p =0041:7180

0041:718C

int*p = &j; &p = 0041:718C

p = 0041:7180

*p = 22

#include <stdio.h>

int i, j, k, l;

int *p;

int main(void)

{

 i = 11; j = 22; k = 33; l = 44;

 printf("%p %p %p %p\n",&i,&j,&k,&l);

 p = &j;

 printf("%p %p %d\n",&p,p,*p);

 return 0;

}

Using Pointers

There are few important operations, which we will do with the pointers:

· Define a pointer variables

· Assign the address of a variable to a pointer

· Access the value at the address available in the pointer variable. This is done by using unary operator * that returns the value of the variable located at the address specified by its operand.

Just as you dereference an iterator to access the object to which it refers, you dereference a pointer to access the object to which it points. You accomplish the dereferencing the same way – with * , the dereference operator.

[image: image4.emf]=

=

<address> &<object>

*<address> <object>

Example

Declare the variable i and assign the value 11 to it. To store the integer value of type int we need 4 bytes.
int i = 11;

Let the memory for variable i starts from the cell 0041:717C. It means that &i = 0041:717C.

[image: image5.emf]memory

0B

0041:717C

00 00 00

i = 11

10

= B

16

7C

0041:7180

71 41 00

ptr = 0041:717C

ptr = &i, *ptr = 11

&i = 0041:717C &ptr = 0041:7180

Declare the pointer ptr. Pointer declaration:

int *ptr;

Let the memory for variable ptr starts from the cell 0041:7180. It means that &ptr = 0041:7180. Pointer contains an address, the size of address is 4 bytes. So the size of pointer is 4 bytes. Let the memory cells for ptr are allocated after memory cells for i.
Assign the address of i to ptr.
ptr = &i;

Now ptr contains the address of i. We know that &i = 0041:717C, so the value 0041:717C is assigned to ptr. So ptr = 0041:717C. The value 0041:717C is put inside 4 bytes of ptr.

The sentence “ptr points to i” means that “ptr contains the address of i”.
In order to get the object where the poiter points to, use the dereference operator *. So *ptr is an integer value located at the address ptr = 0041:717C. At the address 0041:717C we have an integer value 11.
#include <stdio.h>

int i;

int *ptr;

int main(void)

{

 i = 11; // Assign a variable

 printf("The address of the variable i is: %p\n",&i);

 printf("ptr is a NULL pointer: %p\n",ptr);

 ptr = &i; // store address of i in pointer variable ptr

 printf("The address stored in ptr variable is: %p\n",ptr);

 printf("i = %d, value of *ptr = %d\n",i,*ptr);

 printf("The address where the pointer is located: %p\n",&ptr);

 return 0;

}

Tricky program “Catch an Address of a variable”.

#include <stdio.h>

int i = 1234;

int *ptr;

int main(void)

{

 printf("%p\n",&i);

 ptr = (int *)0x00405000; // put there the address of variable i
 printf("%p %d\n",ptr,*ptr); // so that *ptr = i

 return 0;

}

Reassigning Pointers

Pointers can point to different objects at different times during the life of a program. Reassigning a pointer works like reassigning any other variable.

#include <stdio.h>

int i = 1234, j = 5678;

int *ptr;

int main(void)

{

 printf("i = %d, j = %d\n",i,j);

 printf("&i = %p, &j = %p\n",&i,&j);

 ptr = &i; printf("ptr = %p, *ptr = %d\n",ptr,*ptr);

 ptr = &j; printf("ptr = %p, *ptr = %d\n",ptr,*ptr);

 return 0;

}
Using Pointers to Objects

The previous program has worked only with values of a built-in type int. But you can use pointers with objects just as easily. You can access an object through a pointer using the dereference operator.

You can call the member functions of an object through a pointer the same way you can call the member functions of an object through an iterator. One way to do this is by using the dereference operator and the member access operator.

Just as with iterators, you can use the -> operator with pointers for a more readable way to access object members.

#include <cstdio>

#include <vector>

using namespace std;

vector<int> v(10000);

vector<int> *ptr;

int main(void)

{

 ptr = &v;

 printf("%d\n",(*ptr).size());

 printf("%d\n",ptr->size());

 return 0;

}

The code (*ptr).size() says “Take the result of dereferencing ptr and call that object’s size() member function”.

NULL Pointer

It is always a good practice to assign the pointer NULL to a pointer variable in case you do not have exact address to be assigned. This is done at the time of variable declaration. A pointer that is assigned NULL is called a null pointer.

The NULL pointer is a constant with a value of zero defined in several standard libraries. Consider the following program:

#include <stdio.h>

int *ptr = NULL;

int main(void)

{

 printf("ptr is a NULL pointer: %p\n",ptr);

 printf("The address where the pointer is located: %p\n",&ptr);

 return 0;

}

[image: image6.emf]memory

00

0041:717C

00 00

00

ptr = 0000:0000

&ptr = 0041:717C

On most of the operating systems, programs are not permitted to access memory at address 0 because that memory is reserved by the operating system. However, the memory address 0 has special significance; it signals that the pointer is not intended to point to an accessible memory location. But by convention, if a pointer contains the null (zero) value, it is assumed to point to nothing.

Pointer Arithmetic

Pointer is an address which is a numeric value; therefore, you can perform arithmetic operations on a pointer just as you can a numeric value. There are four arithmetic operators that can be used on pointers: ++, --, +, and -.

To understand pointer arithmetic, let us consider that ptr is an integer pointer which points to the address 0041:717C. Assuming 32-bit integers, let us perform the following arithmatic operation on the pointer:

ptr++;
The ptr will point to the location 0041:7180 because each time ptr is incremented, it will point to the next integer. This operation will move the pointer to next memory location without impacting actual value at the memory location.

#include <stdio.h>

int i, j, k, l;

int *ptr = &k;

int main(void)

{

 i = 11; j = 22; k = 33; l = 44;

 printf("%d\n",*ptr++); // 33

 printf("%d\n",*ptr++); // 22

 printf("%d\n",*ptr++); // 11

 printf("%d\n",*ptr++); // 44

 return 0;

}

[image: image7.emf]memory

k = 33

ptr = &k

j = 22

0041:7180

i = 11

0041:7184

l = 44

0041:7188 0041:717C

ptr++

If ptr points to a character whose address is 0041:7178, then the operation ptr++ will point to the location 0041:7179 because next character will be available at 0041:7179.

#include <stdio.h>

char i, j, k, l;

char *ptr = &k;

int main(void)

{

 printf("%p %p %p %p\n",&i,&j,&k,&l);

 i = 'A'; j = 'B'; k = 'C'; l = 'D';

 printf("%c\n",*ptr++); // C

 printf("%c\n",*ptr++); // B

 printf("%c\n",*ptr++); // A

 printf("%c\n",*ptr++); // D

 return 0;

}

[image: image8.emf]memory

k = ‘C’

ptr = &k

j =’B’

0041:7179

i = ‘A’

0041:717A

l = ‘D’

0041:717B 0041:7178

ptr++

Pointers and arrays

The name of the array always points to the first element of an array. Address of first element of an array m is &m[0]. Hence, &m[0] is equivalent to m.

[image: image9.emf]m &m[0] =

Also, &m[i] is equivalent to m + i:

[image: image10.emf]m + i &m[i] =

#include <stdio.h>

int m[5] = {1,2,3,4,5};

int main(void)

{

 printf("%p %p\n",m,&m[0]);

 printf("%p %p\n",m+2,&m[2]);

 return 0;

}

Value in address &m[0] is m[0] and value in address m is *m. Hence, m[0] is equivalent to *m.

[image: image11.emf]m[0] *m =

Also, m[i] is equivalent to *(m + i):

[image: image12.emf]m[i] *(m+i) =

#include <stdio.h>

int m[5] = {1,2,3,4,5};

int main(void)

{

 for(int i = 0; i < 5; i++)

 printf("%d %d\n",m[i],*(m+i));

 return 0;

}

You can use pointer to access the data in array. Print all elements of array in different ways:

#include <stdio.h>

int m[5] = {1,2,3,4,5};

int *ptr = m, i;

int main(void)

{

 for(i = 0; i < 5; i++)

 printf("%d %d %d\n",*ptr++,*(m+i),m[i]);
 return 0;

}

Dynamic Memory Allocation for Objects

Allocate memory for integers.

#include <stdio.h>

int *p, *q;

int main(void)

{

 p = new int(22);

 q = new int; // memory allocated, but nothing assigned,
 // garbage is here
 printf("%d %d\n",*p,*q);

 *q = 55;

 printf("%d %d\n",*p,*q);

 delete p;

 delete q;

 return 0;

}

Allocate memory for array of integers.
#include <stdio.h>

int *p;

int main(void)

{

 p = new int[10];

 for(int i = 0; i < 10; i++)

 p[i] = i*i;

 for(int i = 0; i < 10; i++)

 printf("%d ",p[i]);

 printf("\n");

 delete[] p;

 return 0;

}

Objects are no different from simple data types. For example, consider the following code where we are going to use an array of objects to clarify the concept:
#include <stdio.h>

class Point

{

public:

 Point()

 {

 printf("Point Constructor\n");

 }

 ~Point()

 {

 printf("Point Destructor\n");

 }

};

int main(void)

{

 Point p;

 return 0;

}

Define a pointer to the class:

#include <stdio.h>

class Point

{

public:

 Point()

 {

 printf("Point Constructor\n");

 }

 ~Point()

 {

 printf("Point Destructor\n");

 }

};

int main(void)

{

 Point *p = new Point;

 delete p;

 return 0;

}

If you were to allocate an array of Point objects, the constructor would be called this number of times and similarly while deleting these objects, destructor will also be called same number of times:

#include <stdio.h>

class Point

{

public:

 Point()

 {

 printf("Point Constructor\n");

 }

 ~Point()

 {

 printf("Point Destructor\n");

 }

};

int main(void)

{

 Point *p = new Point[5];

 // delete p; // wrong, p points to array!

 delete[] p;

 return 0;

}

Reference

A reference variable is an alias, that is, another name for an already existing variable. Once a reference is initialized with a variable, either the variable name or the reference name may be used to refer to the variable.

Think of references as nicknames. For example, suppose you’ve got a friend named Gennadiy, and he asks to be called by a nickname Gena. So when you’re at a party with your friend, you can call him over using either Gennadiy or Gena. Your friend is only one person, but you can call him using either his name or a nickname. This is the same as how a variable and a reference to that variable work.

[image: image13.emf]a person

Gennadiy

Gena

Creating References

Think of a variable name as a label attached to the variable's location in memory. You can then think of a reference as a second label attached to that memory location. Therefore, you can access the contents of the variable through either the original variable name or the reference.

Cosider the variable declaration:

int i = 4;

[image: image14.emf]i

memory

We can declare reference variables for i as follows:

int &ref = i;

[image: image15.emf]i

memory

ref

Read the & in this declaration as reference. Thus, read the declaration as "ref is an integer reference initialized to i".

References vs Pointers
· You cannot have NULL references. You must always be able to assume that a reference is connected to a legitimate piece of storage.

· Once a reference is initialized to an object, it cannot be changed to refer to another object. Pointers can be pointed to another object at any time.

· A reference must be initialized when it is created. Pointers can be initialized at any time.

Never do this:

 int &i;
You’ll get a compile error. You must initialize the reference when you declare it.

You can’t reassign a reference to refer to another variable so, for example, the results of the following code might not be obvious:

#include <stdio.h>

int i = 11, &refi = i;

int j = 22, &refj = j;

int main(void)

{

 refj = refi;

 printf("%d %d\n",i,j);

 return 0;

}

[image: image16.emf]11

i

refi

22

j

refj

11

i

refi

11

j

refj

refj = refi

refj is just another name for j, and refi is another name for i. So the code refj = refi is equivalent to j = i.
In the following code i and ref points to the same memory location:

#include <stdio.h>

int i = 10;

int &ref = i;

int main(void)

{

 printf("%d %d\n",i,ref);

 i += 2;

 printf("%d %d\n",i,ref);

 return 0;

}

You can do even this:

#include <stdio.h>

int i = 11, &j = i, &k = j;

int main(void)

{

 printf("%d %d %d\n",i,j,k);

 k++;

 printf("%d %d %d\n",i,j,k);

 return 0;

}

[image: image17.emf]11

i

j

k

k++

12

i

j

k

When to Use References?

While working with classes in C++, there are times when you have to pass a class object as an argument to some function. Someone with little or no knowledge of references would pass the object by value. But, do you know that pass by value method is very expensive as all the object data is copied from one variable to the other variable.

Cosider the method GetDist:

#include <stdio.h>

#include <math.h>

class Point

{

private:

 double x, y;

public:

 Point(double x = 0, double y = 0) : x(x), y(y) {}

 double GetX(void)

 {

 return x;

 }

 double GetY(void)

 {

 return y;

 }

 double GetDist(const Point &a)

 {

 return sqrt((this->x - a.x)*(this->x - a.x) +

 (this->y - a.y)*(this->y - a.y));

 }
};

Point a(0,0), b(3,4);

int main(void)

{

 double res = a.GetDist(b);

 printf("%lf\n",res);

 return 0;

}

Passing parameters by references

When you pass a variable to a function, the function gets a copy of the variable. This means that the original variable you passed (called the argument variable) can’t be changed. Sometimes this might be exactly what you want because it keeps the argument variable safe and unalterable. But other times you might want to change an argument variable from inside the function to which it was passed. You can accomplish this by using references.

Next program calls swap function. Through the use of references, the argument variables’ values are successfully exchanged.

#include <stdio.h>

int a, b;

void swap(int &x, int &y)

{

 int temp = x;

 x = y;

 y = temp;

}

int main(void)

{

 a = 11; b = 22;

 printf("%d %d\n",a,b);

 swap(a,b);

 printf("%d %d\n",a,b);

 return 0;

}

Passing a variable by value creates some overhead because you must copy the variable before you assign it to a parameter. When we’re talking about variables of simple, builtin types, such as an int or a float, the overhead is negligible. But a large object, such as one that represents an entire 3D world, could be expensive to copy. Passing by reference, on the other hand, is efficient because you don’t make a copy of an argument variable. Instead, you simply provide access to the existing object through a reference.

Constant reference

One way to efficiently give a function access to a large object is to pass it by reference. However, this introduces a potential problem. As you saw in the swap program, it opens up an argument variable to being changed. But what if you don’t want to change the argument variable? Is there a way to take advantage of the efficiency of passing by reference while protecting an argument variable’s integrity? Yes, there is. The answer is to pass a constant reference.

A constant reference is a restricted reference. It acts like any other reference, except you can’t use it to change the value to which it refers. To create a constant reference, simply put the keyword const before the type in the reference declaration.

#include <cstdio>

#include <vector>

using namespace std;

vector<int> v(10000);

int GetSize(const vector<int> &v)

{

 //v[0] = 4; forbidden!!!

 return v.size();

}

int main(void)

{

 printf("%d\n",GetSize(v));

 return 0;

}

How to pass arguments

There are three different ways to pass arguments: by value, by reference, and by constant reference. So how do you decide which method to use? Here are some guidelines:

· by value. Pass by value when an argument variable is one of the fundamental built-in types, such as bool, int or float . Objects of these types are so small that passing by reference doesn’t result in any gain in efficiency. You should also pass by value when you want the computer to make a copy of a variable. You might want to use a copy if you plan to alter a parameter in a function, but you don’t want the actual argument variable to be affected.

· by constant reference. Pass a constant reference when you want to efficiently pass a value that you don’t need to change.

· by reference. Pass a reference only when you want to alter the value of the argument variable. However, you should try to avoid changing argument variables.

Fund the sum of two numbers. Pass by value.

#include <stdio.h>

int a, b, c;

int sum (int a, int b)

{

 return a + b;

}

int main(void)

{

 a = 6;

 b = 4;

 c = sum(a,b);

 printf("%d + %d = %d\n",a,b,c);

 return 0;

}

Pass by reference. Add 1 to the number. If we pass by value, the local copy of a in add1 function will be increased by 1, not global variable a.

#include <stdio.h>

int a;

void add1(int &a)

{

 a++;

}

int main(void)

{

 a = 6;

 add1(a);

 printf("%d\n",a);

 return 0;

}

Working with pointers. Function returns a pointer.
#include <stdio.h>

int *a, *b, *c;

int* sum (int *a, int *b)

{

 int *res = new (int);

 *res = *a + *b;

 return res;

}

int main(void)

{

 a = new (int); b = new (int);

 *a = 6; *b = 4;

 c = sum(a,b);

 printf("%d + %d = %d\n",*a,*b,*c);

 delete a; delete b; delete c;

 return 0;

}

Pass pointers by value. Function “returns” more than one value – the sum and the product of numbers.

#include <stdio.h>

int *a, *b, *sum, *mult;

void f(int *a, int *b, int *s, int *m)

{

 *s = *a + *b;

 *m = *a * *b;

}

int main(void)

{

 a = new (int); b = new (int);

 sum = new (int); mult = new (int);

 *a = 6; *b = 4;

 f(a,b,sum,mult);

 printf("%d + %d = %d\n",*a,*b,*sum);

 printf("%d * %d = %d\n",*a,*b,*mult);

 delete a; delete b;

 delete sum; delete mult;

 return 0;

}

The same function that “returns” two values using pointers.

#include <stdio.h>

int a, b, sum, mult;

void f(int a, int b, int *s, int *m)

{

 *s = a + b;

 *m = a * b;

}

int main(void)

{

 a = 6; b = 4;

 f(a,b,&sum,&mult);

 printf("%d + %d = %d\n",a,b,sum);

 printf("%d * %d = %d\n",a,b,mult);

 return 0;

}

The same function that “returns” two values using references.

#include <stdio.h>

int a, b, sum, mult;

void f(int a, int b, int &s, int &m)

{

 s = a + b;

 m = a * b;

}

int main(void)

{

 a = 6; b = 4;

 f(a,b,sum,mult);

 printf("%d + %d = %d\n",a,b,sum);

 printf("%d * %d = %d\n",a,b,mult);

 return 0;

}

Reference to a pointer. Add 1 to the int cell pointed by a variable.
#include <stdio.h>

int *a;

void add1(int *&a)

{

 *a += 1;

 (*a)++; // not the same as *a++

}

int main(void)

{

 a = new (int);

 *a = 6;

 add1(a);

 printf("%d\n",*a);

 return 0;

}

Returning values by reference

A C++ function can return a reference in a similar way as it returns a pointer. When a function returns a reference, it returns an implicit pointer to its return value. This way, a function can be used on the left side of an assignment statement. When returning the value, don't precede the name of the variable with &. The function returns another name of the object.
· return by value: function returns the value of an object;
· return by reference: function returns the object itself;

#include <stdio.h>

int a[5] = {1,2,3,4,5};

int i;

int& SetValue(int i)

{

 return a[i];

}

int main(void)

{

 for(i = 0; i < 5; i++) printf("%d ",a[i]); printf("\n");

 SetValue(1) = 100;

 printf("%d %d %d %d %d\n",
 SetValue(0),SetValue(1),SetValue(2),SetValue(3),SetValue(4));

 SetValue(2) = 200;

 for(i = 0; i < 5; i++) printf("%d ",a[i]); printf("\n");

 return 0;

}

Function GetObject returns the object itself:

#include <stdio.h>

class Point

{

public:

 int x, y;

 Point(int x = 0, int y = 0) : x(x), y(y) {}

};

Point a, b, c;

int i;

Point& GetObject(int i)

{

 if (i == 1) return a;

 if (i == 2) return b;

 return c;

}

int main(void)

{

 GetObject(1).x = 4;

 GetObject(1).y = 7;

 for(i = 1; i <= 3; i++)

 {

 GetObject(i) = Point(i,i*i);

 printf("%d %d\n",GetObject(i).x,GetObject(i).y);

 }

 printf("\n");

 printf("%d %d\n",a.x,a.y);

 printf("%d %d\n",b.x,b.y);

 printf("%d %d\n",c.x,c.y);

 return 0;

}

How to pass two dimentional arrays to functions
First way. You need to pass the size of the second dimention.

#include <stdio.h>

int m[2][3] =

 { {1,2,3},

 {4,5,6} };

int sum(int a[][3], int n, int m)

{

 int s = 0;

 for(int i = 0; i < n; i++)

 for(int j = 0; j < m; j++)

 s += a[i][j];

 return s;

}

int main(void)

{

 printf("%d\n",sum(m,2,3));

 return 0;

}

Second way. Two dimentional array is represented in memory like a linear array. So you can pass to a function sum a pointer to a linear array. In this case a[i][j] is accessed like a[i * m + j].

#include <stdio.h>

int m[2][3] =

 { {1,2,3},

 {4,5,6} };

int sum(int* a, int n, int m)

{

 int s = 0;

 for(int i = 0; i < n; i++)

 for(int j = 0; j < m; j++)

 s += a[i * m + j];

 return s;

}

int main(void)

{

 printf("%d\n",sum((int *)m,2,3));

 return 0;

}

Third way. You can define a two dimensional array dynamically.

#include <stdio.h>

int i, j, n, m;

int **a;

int sum(int** a, int n, int m)

{

 int s = 0;

 for(int i = 0; i < n; i++)

 for(int j = 0; j < m; j++)

 s += a[i][j];

 return s;

}

int main(void)

{

 n = 2; m = 3;

 a = new int* [n];

 for(i = 0; i < n; i++)

 {

 a[i] = new int[m];

 for(j = 0; j < m; j++)

 {

 a[i][j] = i * i + j * j; // assign some values

 printf("%d ",a[i][j]);

 }
 printf("\n");

 }

 printf("%d\n",sum(a,n,m));

 return 0;

}

How int is represented in memory
Consider a program to see how each byte in an integer is stored in your architecture.
#include <stdio.h>

#include <string.h>

char c[4];

int i = 0x1A2B3C4D;

int main(void)

{

 memcpy(&c[0],&i,4);

 printf("%X ",(int)c[0]);

 printf("%X ",(int)c[1]);

 printf("%X ",(int)c[2]);

 printf("%X\n",(int)c[3]);

 return 0;

}
Print integer value byte by byte.

#include <stdio.h>

int a = 0x1A2B3C4D;

char *i;

int main(void)

{

 i = (char *)&a;

 printf("%p %p %p\n",&a,&i,i);

 printf("%X %X %X %X\n",*i,*(i+1),*(i+2),*(i+3));

 return 0;

}
Little-endian. Let i = 0x1A2B3C4D. The address increment is 1-byte. The least significant byte (LSB) value of i, 4Dh, is at the lowest address. The other bytes follow in increasing order of significance.

[image: image18.emf]4D 3C 2B 1A i

memory

Increasing Adresses

int i = 1000;
As 100010 = 3E816, then we have next representation in memory:

[image: image19.emf]E8 03 00 00 i

memory

Increasing Adresses

QUIZ

https://www.codercrunch.com/quiz/take/970373692/c-pointers-quiz
_1502734831.vsd
memory

i

y

j

k

x

_1507040704.vsd
m + i

&m[i]

=

_1552200964.vsd
p =0041:7180

k = 33

0041:717C

j =22

0041:7180

i = 11

0041:7184

l = 44

0041:7188

0041:718C

int *p = &j;

&p = 0041:718C

p = 0041:7180

*p = 22

_1602671326.vsd
<address>

=

&<object>

*<address>

=

<object>

_1507041049.vsd
m[0]

*m

=

_1507041109.vsd
m[i]

*(m+i)

=

_1502876554.vsd
11

11

i

i

22

refi

refi

j

refj

11

j

refj

refj = refi

_1507040497.vsd
m

&m[0]

=

_1502877153.vsd
11

i

k++

12

i

j

k

j

k

_1502875527.vsd
a person

Gennadiy

Gena

_1502368079.vsd
memory

0B

0041:717C

ptr = &i, *ptr = 11

&i = 0041:717C

00

00

00

i = 1110 = B16

7C

0041:7180

71

41

00

ptr = 0041:717C

&ptr = 0041:7180

_1502386403.vsd
memory

k = 33

ptr = &k

j = 22

0041:7180

i = 11

0041:7184

l = 44

0041:7188

0041:717C

ptr++

_1502387050.vsd
memory

k = ‘C’

ptr = &k

j =’B’

0041:7179

i = ‘A’

0041:717A

l = ‘D’

0041:717B

0041:7178

ptr++

_1502370254.vsd
memory

00

0041:717C

00

00

00

ptr = 0000:0000

&ptr = 0041:717C

_1502362146.vsd
i

memory

ref

_1502364268.vsd
E8

03

00

00

i

memory

Increasing Adresses

_1502365999.vsd
k

0041:717C

j

0041:7180

memory

i

0041:7184

l

0041:7188

_1502364216.vsd
4D

3C

2B

1A

i

memory

Increasing Adresses

_1502362078.vsd
i

memory

